• Title/Summary/Keyword: Voltage disturbance generator

Search Result 44, Processing Time 0.023 seconds

An SCR Thyristor Based Three-Phase Voltage Disturbance Generator

  • Han, Heung-Soo;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.372-378
    • /
    • 2012
  • This paper deals with a 3-phase voltage disturbance generator for a performance test of custom power devices such as dynamic voltage restorers (DVR), dynamic uninterruptable power supplies (UPS), etc. The operating principle of the proposed circuit is described in each mode of voltage sag, swell, outage, and unbalance. The main components of the proposed disturbance generator are silicone controlled rectifier (SCR) thyristors, variable autotransformers, and transformers. Therefore, the disturbance generator can be implemented with a considerably low cost compared to the conventional pulse width modified (PWM) inverter and converter type generators. Furthermore, it has good features of high reliability with simple structure, high efficiency caused by no PWM switching of the SCR thyristors, and easy control with a wide variation range. To verify the validity of the proposed scheme, simulations and experiments are carried out.

Analysis of Output Voltage Variation of a Voltage Disturbance Generator according to the Load Power Factor in Voltage Sag and Swell Mode (전압 새그 및 스웰 발생 모드에서 부하역률에 따른 전압외란 발생기의 출력전압 변동 해석)

  • Han, Heung-Soo;Jeong, Hye-Soo;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.80-87
    • /
    • 2016
  • This study investigates output voltage variation of a voltage disturbance generator in case of sag and swell modes. The generator uses series transformers and silicon-controlled rectifier thyristors to provide voltage disturbance; consequently, voltage drop at the output terminal is inevitable. On the basis of the analysis, voltage drop increases as the power factor decreases in lagging. Voltage drop is 3.7 [%] at a power factor (lagging) of 0.8. Simulation and experimental results show the validity of the analysis.

Power Quality Disturbance Generator with Phase Jump for the Test of Microgrid (마이크로그리드 시험을 위한 전압 위상 변동 기능을 가지는 전력품질외란 발생기)

  • Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.104-110
    • /
    • 2015
  • This paper describes a power quality disturbance generator for the test of a microgrid. The generator provides phase-angle jump as well as voltage sag with simple structure. The main components of the generator are SCR thyristors and transformers, therefore, high reliability and high efficiency can be obtained without switching losses. The operating principle of the proposed scheme is described and the voltage and current characteristics in case of voltage sag with phase-angle jump is analyzed. The usefulness of the proposed topology is verified through simulations and experimental results.

Analysis of Voltage Drop Characteristics of Transformer-based 3-phase Voltage Disturbance Generator (변압기 기반 3상 전압변동발생기의 전압강하 특성해석)

  • Han, Heung-Soo;Lee, Young-Ho;Song, Woong-Hyub;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.411-416
    • /
    • 2010
  • A voltage drop characteristics of a transformer-based voltage disturbance generator with series transformers is analysed. It is well known that a voltage disturbance generator with series transformer is cost-effective and reliable compared with other types. The voltage drop depends on the %Z of the transformer, power rating, and output power factor. A wrong design of the transformer results in a severe voltage drop, which can not guarantee the proper performance of the generator. The voltage drop is analysed under the condition of 10kVA output power rating and 4% of %Z with the variation of power factor. It is found through simulations and experiments that the drop increases as the power factor decreases in lagging mode, and the drop is 4% of the rated voltage in case of 0.85 lagging power factor.

Switching Characteristics Analysis of a 3-phase Voltage Disturbance Generator Applicable to Linear and Nonlinear Loads (선형 및 비선형 부하에 적용 가능한 3상 전압변동 발생기의 스위칭 특성해석)

  • Nho, Eui-Cheol;Park, Sung-Dae;Kim, In-Dong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.163-170
    • /
    • 2008
  • Switching characteristics in both linear and nonlinear loads are analysed for a 3-phase voltage disturbance generator applicable to the performance test of custom power devices. Since the line current of the linear load is continuous the natural commutation of the SCR thyristors comprising the generator is carried out with ease. However, in case of nonlinear load the natural commutation scheme is different from that of the linear load due to the discontinuous load current. Through the analysis it is found that a specific switching condition can provide the voltage sag, swell, outage, and voltage unbalance generation in nonlinear load too. The operation of the voltage disturbance generation is described and the usefulness of the generator is verified through simulation and experimental results. It is expected that the generator can be used in the performance test of the custom power devices with low implementation cost and easy control.

Reduction of series transformer voltage variation of voltage disturbance generator (전압변동 발생기의 직렬변압기에 의한 전압변동 개선)

  • Nho, E.C.;Lee, Y.H.;Min, B.H.;Kim, I.D.;Chun, T.W.;Kim, H.G.;Choi, N.S.
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.218-220
    • /
    • 2007
  • A new 3-phase voltage disturbance generator is proposed. The voltage drop of the conventional generator in normal mode can be reduced significantly. The output voltage of the proposed generator is constant in normal mode and the efficiency of the series transformer is improved. The proposed generator has good feature of simple structure, cost effective implementation, high reliability, high efficiency, and easy control. The usefulness of the scheme is verified through simulation and experiments.

  • PDF

Improvement of output voltage drop characteristic for 3-phase voltage disturbance generator (3상 전압변동 발생기의 출력전압강하 특성 개선)

  • Lee, Y.H.;Min, B.H.;Park, S.D.;Nho, E.C.;Kim, I.D.;Chum, T.W.;Kim, H.G.;Choi, N.S.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.120-122
    • /
    • 2007
  • A new power quality disturbance generator is proposed. The proposed scheme overcomes the problem of voltage drop of the conventional generator in normal mode. Therefore, the output voltage of the proposed generator is constant in normal mode and the efficiency of the series transformer is improved. The proposed generator has good feature of simple structure, cost effective implementation, high reliability and easy control. The usefulness of the scheme is verified through simulation and experiments.

  • PDF

Instantaneous Voltage Disturbance Generator for the Performance Test of Dynamic UPS (다이나믹 UPS의 성능시험을 위한 순시전압 변동 발생기)

  • Kim J.W.;Lee K.S.;Byeon W.Y.;Nho E.C.;Kim I.D.;Chun T.W.;Kim H.G.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1254-1256
    • /
    • 2004
  • This paper deals with a novel 3-phase power quality disturbance generator. The proposed generator can be applied to the performance that of custom power devices. Voltage sag, swell and outage are provided by the generator. The control scheme for the disturbance generation is simple, and hardware setup is cost effective, compared with conventional scheme. The operating principle of the generator is described and the usefulness verified through simulation with 10KVA power rating.

  • PDF

A simple structured voltage disturbance generator for power quality improving devices (전력품질 개선장치를 위한 간단한 구조의 전압변동 발생기)

  • Lee, B.C.;Choi, S.H.;Paeng, S.H.;Nho, E.C.;Kim, I.D.;Chun, T.W.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.552-554
    • /
    • 2005
  • This paper deals with a simple structured voltage disturbance generator for power quality improving devices. The proposed generator can be applied to the performance test of custom power devices. Voltage sag, swell, outage, unbalance and phase jump after outage are provided by the generator. The improving phase jump operating principle of the generator is described and analysed. The usefulness of the generator is verified through simulation.

  • PDF

Improvement of Transient Performance of Synchronous Generator using Feedforward Controller (피드포워드 제어기를 사용한 동기발전기의 과도특성 개선)

  • An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • A brush-less type synchronous generator driven by an internal-combustion engine is used for emergency electric source. These types of generators have to maintain a certain range of output voltage even under the sudden load change conditions such as full load application and removal. This paper describes a method for suppressing the output voltage of a synchronous generator that operates excessively when the load fluctuates. The method used in this paper is a feedforward control method in which the main voltage control consists of a feedback loop using a typical PID controller and the load current is detected as a disturbance element and compensated directly. A feedforward system is constructed in which the load current is regarded as disturbance, and the appropriate feedforward controller configuration and parameters are found through simulation. Finally, it can be seen through the experiment that the feedforward control is performed properly. It can be seen that the generator terminal voltage is recovered to the steady state in a short period of time as compared with the existing PID control method even when the entire load of the generator is changed.