• 제목/요약/키워드: Voltage dependent $Ca^{2+}$ channel

검색결과 105건 처리시간 0.027초

Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization

  • Eum, Jin Hee;Park, Miseon;Yoon, Jung Ah;Yoon, Sook Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.297-306
    • /
    • 2020
  • Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.

Ginsenosides Inhibit N-, p-, arid Q-types but not L-type of $Ca^{2+}$ Channel in Bovine Chromaffin cells

  • Seok Chol;Jung, Se-Yeon;Kim, Hyun-Oh;Kim, Hack-Seang;Hyewhon Rhim;Kim, Seok-Chang;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제24권1호
    • /
    • pp.18-22
    • /
    • 2000
  • 앞의 연구에서 우리는 진세노사이드가 신경세포에 존재하는 high-threshold voltage-dependent $Ca^{2+}$ channel을 억제한다는 것을 발표하였다. 그러나, 이러한 연구는 진세노사이드가 여러 칼슘 채널subtypes중 어느 특정 칼슘 채널만을 선택적으로 조절한다는 것을 보여주지는 않았다. 따라서 이 연구에서 우리는 여러 칼슘 채널subtypes에 선택적으로 작용하는 약물 혹은 toxins을 이용하여 진세노사이드가 어느 종류의 칼슘 채널 subtypes를 억제하는가를 bovine chromaffin cell을 이용하여 연구하였다. 사용한 물질은nimodipine(L-type 칼슘 채널 길항제), $\omega$-conotoxin GVIA (N-type $Ca^{2+}$ channel 길항제), $\omega$-agatoxin IVA(P-type 칼슘 채널 길항제)이었다. 연구 결과 진세노사이드는 bovine chromaffin 세포에 존재하는 high-threshold 칼슘 current을 투여 농도별로 억제하였다. $IC_{50}$/은 약 120 $\mu$g/ml인 것으로 나타났다. nimodipine은 진세노사이드에 의한 칼슘 currents억제 작용에 영향을 미치지 않은 것으로 나타났다. 그러나, $\omega$-conotoxin GVIA, $\omega$-agatoxin IVA 및 nimodipine+$\omega$-conotoxin GVIA+$\omega$-agatoxin IVA을 처리한 세포에서는 진세노사이드에 의한 칼슘 currents억제 작용이 현저하게 줄어 들었다. 이러한 연구 결과들은 진세노사이드가 L-type 칼슘 채널은 억제하지 않고, 주로 N-, p-, 및 Q-type칼슘 채널을 억제한다는 것을 보여주고 있다

  • PDF

Asn-Linked Glycosylation Contributes to Surface Expression and Voltage-Dependent Gating of Cav1.2 Ca2+ Channel

  • Park, Hyun-Jee;Min, Se-Hong;Won, Yu-Jin;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1371-1379
    • /
    • 2015
  • The Cav1.2 Ca2+ channel is essential for cardiac and smooth muscle contractility and many physiological functions. We mutated single, double, and quadruple sites of the four potential Asn (N)-glycosylation sites in the rabbit Cav1.2 into Gln (Q) to explore the effects of Nglycosylation. When a single mutant (N124Q, N299Q, N1359Q, or N1410Q) or Cav1.2/WT was expressed in Xenopus oocytes, the biophysical properties of single mutants were not significantly different from Cav1.2/WT. In comparison, the double mutant N124,299Q showed a positive shift in voltage-dependent gating. Furthermore, the quadruple mutant (QM; N124,299,1359,1410Q) showed a positive shift in voltage-dependent gating as well as a reduction of current. We tagged EGFP to the QM, double mutants, and Cav1.2/WT to chase the mechanisms underlying the reduced currents of QM. The surface fluorescence intensity of QM was weaker than that of Cav1.2/WT, suggesting that the reduced current of QM arises from its lower surface expression than Cav1.2/WT. Tunicamycin treatment of oocytes expressing Cav1.2/WT mimicked the effects of the quadruple mutations. These findings suggest that Nglycosylation contributes to the surface expression and voltage-dependent gating of Cav1.2.

Identification of Three Types of Voltage Dependent $Ca^{2+}$-Channels in Mouse Follicular Oocytes

  • Bae, In-Ha;Yoon, Sook-Young;Yoon, Yong-Dal;Kim, Moon-Kyoo;Kim, Hae-Kwon
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.53-58
    • /
    • 1999
  • The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in mouse follicular oocytes. Three types of voltage-dependent $Ca^{2+}$-channels were shown to exist in the follicular oocytes for the first time, the P/Q-type $Ca^{2+}$-channel, the N-type $Ca^{2+}$-channel, and the L-type $Ca^{2+}$-channel. Among proven $Ca^{2+}$-channels distributions of the P/Q-type $Ca^{2+}$-channel and L-type $Ca^{2+}$-channel showed localized staining (clustered pattern) on the oolemma. The distribution of the P/Q-type $Ca^{2+}$-channel showed all localized staining, and the range of localized staining was from 1 to 8 in staining intensity. As the staining intensity increased from 1 to 8, the number of localized staining decreased. The L-type $Ca^{2+}$-channel are homogeneously stained (29.4%-54.2%), while some of them (around 28.7%-44.1%) showed localized staining on the oolemma. However, the rest of them showed no staining at all (17.1%- 26.5%). On the contrary, the N-type $Ca^{2+}$-channel showed mostly homogeneous staining, while nonstaining oocytes were around 33.8%. The rest showed localized staining (10%). However, staining intensity was much weaker than those of the P/Q-type and L-type $Ca^{2+}$-channel. In fact, the N-type $Ca^{2+}$-channel has been known to exist only in neurons (from ectoderm origin), but it is unknown how the N-type $Ca^{2+}$-channel exists in the follicular oocytes (from mesoderm origin). Further studies are needed to examine the expression of $Ca^{2+}$-channels during the developmental stages of the oocytes.

  • PDF

Low-Voltage Activated $Ca^{2+}$ Current Carried via T-Type Channels in the Mouse Egg

  • Yang, Young-Sun;Park, Young-Geun;Cho, Soo-Wan;Cheong, Seung-Jin;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제27권1호
    • /
    • pp.107-114
    • /
    • 1993
  • Most of voltage operated $Ca^{2+}$ channels can be divided into three types (T-, N-, and L-type), according to the electrical and pharmacological properties. Their distribution is closely related to cell specific functions. Properties of the voltage activated $Ca^{2+}$ current in mouse eggs were examined to classify channel types and to deduce the function by using whole cell voltage clamp technique. $Ca^{2+}$ currents appeared below -40 mV and reached a maximum at -15 mV (half maximum was -31 mV), then decayed rapidly (inactivation time constant ${\tau}=28.2{\pm}9.59$ ms at -10 mV within 50 ms after the onset of step depolarization. Activation and inactivation of the $Ca^{2+}$ channel was steeply dependent on voltage, in a relatively low range of $-70\;mV{\sim}-10 mV,$ half maximum of activation was -31 mV and that of inactivation was -39 mV, respectively. This current was not decreased significantly by nifedipine, a specific dihydropyridine $Ca^{2+}$ channel blocker in the range of $1\;{\mu}M\;to\;100{\mu}M.$ The inhibitory effect of $Ni^{2+}\;on\;Ca^{2+}$ current was greater than that of $Cd^{2+}.$ The conductance of $Ba^{2+}$ through the channel was equal to or lower than that of $Ca^{2+}$ These results implied that $Ca^{2+}$ current activated at a lower voltage in the mouse egg is carried via a $Ca^{2+}$ channel with similar properties that of the T-type channel.

  • PDF

생쥐 난자의 활성화에 따른 $Ca^{2+}$-channel의 분포 변화에 관한 연구 (Studies of Changes of $Ca^{2+}$-channel Distribution in the Activated Mouse Ova)

  • 장연수;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권1호
    • /
    • pp.13-24
    • /
    • 2001
  • Objective: In muscle and neuronal cells, calcium channels have been classified by electrophysiological and pharmacological properties into (1) voltage-dependent $Ca^{2+}$-channel (1) P/Q-type $Ca^{2+}$-channel (2) N-type $Ca^{2+}$-channel (3) L-type $Ca^{2+}$-channel (4) T-type $Ca^{2+}$-channel (5) R-type $Ca^{2+}$-channel. The present study was done in order to investigate whether there is any difference in $Ca^{2+}$-channel distribution between activated and normally fertilized embryos. Methods: The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in parthenogenetically activated 2-cell embryos by ethanol and $SrCl_2$ treatment. These 2-cell embryos were obtained by exposure to 6% ethanol for 6 min and to 10 mM $SrCl_2$ for 2h. Results: P/Q-type $Ca^{2+}$-channels and L-type $Ca^{2+}$-channels have been identified. Whereas, three type of $Ca^{2+}$-channel P/Q-type, N-type, L-type have been identified in 2-cell embryos fertilized in vivo. Conclusion: Activation by ethanol was faster than those by $SrCl_2$. However, there was difference in DAB staining of the embryos between ethanol and $SrCl_2$ treatment (87.7% and 54.1 %). Intensity of staining was also different between ethanol- and $SrCl_2$-treated group. However, it has not been known why there was some difference in DAB staining and staining intensity in the present study.

  • PDF

Regulation of the Contraction Induced by Emptying of Intracellular $Ca^{2+}$ Stores in Cat Gastric Smooth Muscle

  • Baek, Hye-Jung;Sim, Sang-Soo;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권2호
    • /
    • pp.113-120
    • /
    • 2000
  • To investigate the mechanism of smooth muscle contraction induced by emptying of intracellular $Ca^{2+}$ stores, we measured isometric contraction and $^{45}Ca^{2+}$ influx. $CaCl_2$ increased $Ca^{2+}$ store emptying- induced contraction in dose-dependent manner, but phospholipase C activity was not affected by the $Ca^{2+}$ store emptying-induced contraction. The contraction was inhibited by voltage-dependent $Ca^{2+}$ channel antagonists dose dependently, but not by TMB-8 (intracellular $Ca^{2+}$ release blocker). Both PKC inhibitors (H-7 and staurosporine) and tyrosine kinase inhibitors (genistein and methyl 2,5-dihydroxycinnamic acid) significantly inhibited the contraction, but calmodulin antagonists (W-7 and trifluoperazine) had no inhibitory effect on the contraction. The combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were greater than that of each one alone. In $Ca^{2+}$ store-emptied condition, $^{45}Ca^{2+}$ influx was significantly inhibited by verapamil, H-7 or genistein but not by trifluoperazine. However combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were not observed. Therefore, this kinase pathway may modulate the sensitivity of contractile protein. These results suggest that contraction induced by emptying of intracellular $Ca^{2+}$ stores was mediated by influx of extracellular $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channel, also protein kinase C and/or tyrosine kinase pathway modulates the $Ca^{2+}$ sensitivity of contractile protein.

  • PDF

전압의존성 $Ca^{2+}$ 통로 억제를 통한 계지(桂枝) 에탄올 추출물의 혈관이완 효능 (Vasodilation of Ethanol Extract of Cinnamomi Ramulus via Voltage Dependent $Ca^{2+}$ Channel Blockage)

  • 김종봉;신흥묵
    • 동의생리병리학회지
    • /
    • 제24권4호
    • /
    • pp.592-597
    • /
    • 2010
  • Cinnamomi Ramulus is one of the medicinal plants that have been used to improve various diseases caused by insufficient blood circulation. This study was performed for the investigation of vasodilation efficacy ethanol extract of Cinnamomi Ramulus (CR). CR exhibited vascular relaxation against phenylephrine (PE, $10^{-6}M$)-, KCl- and NaF-induced contraction in rat thoracic aorta. In addition, its relaxation was endothelium-independent. Treatment of potassium channel blockers such as gilbenclamide (Gli, $10^{-5}M$), tetraethylammonium (TEA, 1 mM) and 4-aminopyridine (4-AP, 0.2 mM) did not effect on the relaxation of CR. The relaxant effects were also not inhibited by pre-treatment of rat aorta with L-NAME ($10^{-4}M$), methylene blue ($10^{-5}M$), indomethacin ($10^{-5}M$), and atropine ($10^{-6}M$). However, nifedipine ($10^{-5}M$), L-type $Ca^{2+}$ channel blocker, in part attenuated the relaxation of CR ($0.2\;mg/m{\ell}$), but SK&F96365 ($3{\times}10^{-5}M$), receptor activated $Ca^{2+}$ channel blocker and 2-APB ($10^{-4}M$), store operated $Ca^{2+}$ channel blocker did not affact dilation of CR. These findings suggest that the endothelium-independent relaxation effect of CR is partly related with inhibition of $Ca^{2+}$ influx via voltage dependent $Ca^{2+}$ channel.

Regulation of $Ca^{2+}$ Influx by Membrane Potential in Microglia

  • Lee, Jungsun;Uhm, Dae-Yong;Sungkwon Chung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.39-39
    • /
    • 2002
  • Microglia are known to have an important function as brain macrophage during immunological processes, oncogenesis, and regeneration in the central nervous system (CNS). A wide variety of ion channels have been identified and characterized in microglia including inward rectifier $K^{+}$ channel (Kir), voltage dependent $K^{+}$ channel (Kv), $Ca^{2+}$-release activated $Ca^{2+}$ channel (CRAC).(omitted)

  • PDF

틸라피아 배대동맥의 아드레날린성 반응의 특성 (The characteristics of adrenergic responses in tilapis dorsal aorta)

  • 최동림;정준기
    • 한국어병학회지
    • /
    • 제9권1호
    • /
    • pp.41-51
    • /
    • 1996
  • 경골어류의 혈관평활근에 대한 adrenaline성 조절기작을 규명의 일환으로 틸라피아의 배대동맥을 사용하여 Adrenergic agonist의 효과와 그 매개에 관여하는 수용체의 subtype에 대한 연구를 하였으며 그 결과는 다음과 같다. 1. Epinephrine, norepinephrine, phenylephrine, clonidine 및 methoxamine은 tilapia의 배대동맥에 대하여 농도의존적인 혈관수축효과만을 나타내었으며, 효력은 epinephrine, norepinephrine, phenylnephrine, clonidine, methoxamine의 순이었으며, 이들 수축반응은 혈관내피세포의 존재유무에 영향을 받지 않았다. 2. Epinephrine, norepinephrine, phenylephrine 및 clonidine 의 농도의존적인 혈관수축반응곡선은 선택적인 $\alpha_2$-adrenergic 수용체 길항제인 yohimbine의 농도가 증가함에 따라 오른쪽으로 평행이동 되었으며, epinephrine과 norepinephrine은 선택적인 $\alpha_1$-수용체 길항제인 prazosin의 농도가 증가함에 따라 오른쪽으로 평행이동되었다. 3. Epinephrine과 norepinephrine의 혈관수축반응은 calcium제거 생리적 완충용액에서는 각각 약 41%, 51% 소실되었며, calcium 유입차단제인 verapamil에 의해서도 거의 유사한 경향을 보였다. 이상의 실험결과들을 종합하면 Catecholamine류는 수축효과만을 나타내었으며 혈관내피세포 존재유무와는 무관하였다. 이러한 수축작용은 $\alpha_1$- 및 $\alpha_2$-adrenergic receptor가 모두 매개하였으며 voltage dependent $Ca^{2+}$ channel을 통하여 유입된 세포외액의 $Ca^{2+}$과 세포내 $Ca^{2+}$의해 일어난다고 사료된다.

  • PDF