• Title/Summary/Keyword: Voltage Sag Compensation

Search Result 78, Processing Time 0.027 seconds

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.

SVC coupled UPQC for reactive power compensation capacity increase and DC link voltage reduction (무효전력 보상 용량 증대 및 DC 링크 전압 저감을 위한 SVC 결합형 UPQC)

  • Pyo, Soo-Han;Park, Jang-Hyun;Oh, Jeong-Sik;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • This paper propose a new form of UPQC (Unified Power Quality Compensator) to compensate the current and voltage quality problems of nonlinear loads. The conventional UPQC system consists of a series inverter, a parallel inverter, and a common DC link. A new type of UPQC proposed is a parallel compensator with SVC (Static Var Compensator) added to compensate for the wide compensation range and low DC link voltage. The parallel inverter compensates the reactive power generated by the nonlinear load, and the series inverter compensates the sag and swell generated at the power supply side.

Utility Interactive Inverter using Indirect Current Control for Fault Ride Through and Voltage Compensation (Grid Code의 Fault Ride Through와 독립부하전압 보상을 위한 간접전류제어 계통연계 인버터)

  • Yoon, Sun-Jae;Oh, Hyung-Min;Choi, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.207-209
    • /
    • 2010
  • 연료전지 시스템의 경우 계통에 Sag 및 Swell 같은 이상이 발생하더라도 계통과 분리되기 전 MBOP등 독립부하에는 안정적인 전원을 공급하는 것이 중요하다. 기존의 직접전류제어방식으로는 계통이상 시 전압을 제어할 수 없으므로 독립부하에 계통이상전압이 그대로 걸리게 된다. 본 논문에서는 계통에 Sag 및 Swell 같은 상황이 발생하더라도 무효전류를 제어하여 자체 부하전압을 보상할 수 있는 간접전류제어 전압보상기법을 이용한 계통 연계형 인버터의 동작을 분석하고 이에 맞는 소자 및 새로운 LCL필터 설계방법을 제안한다.

  • PDF

Performance Analysis of UPQC(Unified Power Quality Conditioner) with Compensation Capability for Voltage Interruption (순간정전에 대한 보상능력을 갖는 UPQC(Unified Power Quality Conditioner)의 성능해석)

  • 김희중;배병열;한병문;설승기;조보형
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.279-286
    • /
    • 2003
  • A new UPQC(unified power quality conditioner), which consists of series inverter, shunt inverter, dc/dc converter, and energy storage, is proposed. The proposing UPQC can compensate reactive power, harmonics, voltage sag and swell, voltage unbalance, and voltage interruption. The control strategy for the proposing UPWQC was derived using the instantaneous power method. The performance of proposing system was analyzed by means of the EMTDC/PSCAD simulation and the experimental work with the hardware prototype. The proposing UPQC has the ultimate capability of improving power quality at the point of installation on power distribution systems or industrial power systems and can be utilized for the custom power device in the future distribution system.

Power flow control and Input voltage Sag compensation Analysis of Bidirectional Intelligent Semiconductor Transformer (양방향 지능형 반도체 변압기의 조류제어와 입력전압 Sag 보상 특성분석)

  • Kim, Do-Hyun;Lee, Byung-Kwon;Han, Byung-Moon;Lee, Jun-Young;Yoon, Young-Doo;Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.345-346
    • /
    • 2013
  • 본 논문에서는 단상 1.9kV/127V, 2kVA 용량의 양방향 지능형 반도체 변압기의 시작품을 제작하고 그 동작특성을 실험적으로 분석한 내용을 기술하고 있다. 제작한 반도체 변압기는 3대의 LLC 컨버터를 입력 측은 직렬로 결합하고 출력 측은 병렬로 결합한 AC-DC 컨버터와 1대의 하드스위칭 양방향 2-Stage DC-AC 컨버터가 직렬로 결합되어 있다. 제안하는 반도체변압기의 회로적인 특성을 분석하기 위해 PSCAD/EMTDC 소프트웨어를 이용한 시뮬레이션을 실시하였고 분석을 통해 얻은 결과를 바탕으로 하드웨어 시작품을 제작하고 다양한 실험을 통해 그 동작과 성능을 검증하였다. 먼저 1차적으로는 정상동작에 대해 실험을 실시하고 얻은 결과를 시뮬레이션 결과와 비교 분석하였다. 2차적으로는 전력의 흐름에 따른 동작을 실험적으로 분석하였다. 그 후에는 입력전압에 외란이 발생하였을 때 보상성능을 순방향 조류와 역방향 조류 2가지 경우로 나누어 실험을 실시하고 그 결과를 실험결과와 비교 분석하였다. 분석한 결과 제안하는 반도체변압기는 양방향 전력흐름이 가능하고 입력전압에 Sag가 발생한 경우에도 이를 보상하여 수전단이나 부하에 전력공급이 가능함을 알 수 있었다. 향후 단상 반도체 변압기 2대를 더 제작하여 3상 3.3kV/380V, 6kVA 용량으로 확대하여 실험을 실시할 예정이다.

  • PDF

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

Performance Improvement of DC-link Control for a Dynamic Voltage Restorer with Power Feedforward Compensation (전력 전향보상을 통한 동적전압보상기 직류단 전압 제어의 성능 향상)

  • Ji, Kyun Seon;Jou, Sung Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1297-1305
    • /
    • 2015
  • This paper proposes a power feedforward technique for the performance improvement of DC-link voltage control in the dynamic voltage restorer (DVR). The DC-link Voltage is able to be unstable for an instant owing to any change in the load and voltage sag. The distortion of the DC-link voltage leads to the negative influence on the performance of DVR. To mitigate the distortion of the DC-link voltage, the power feedforward component is calculated by the load power and the grid voltage, and then it is added to the reference current of the conventional DC-link voltage controller. By including output power feedforward component on the DC-link controller, the DC-link voltage can settle down more quickly than when the conventional DC-link voltage controller applied. The proposed technique was validated through the simulation and experimental results.

A Single-Phase Unified Power Quality Conditioner with a Frequency-Adaptive Repetitive Controller

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.790-799
    • /
    • 2018
  • This paper proposes a single-phase unified power quality conditioner (S-UPQC) for maintaining power quality issues in a microgrid. The S-UPQC can compensate the voltage and current harmonics, voltage sag, and swell as a dynamic voltage restorer (DVR), regardless of variations in the grid frequency. Odd harmonics are treated as even-order harmonics in a rotating frame to implement the harmonic compensators with only one repetitive controller (RC) without any harmonic extractor. The dynamic performance is improved and the delay time is reduced in the RC. The S-UPQC control scheme is designed to maintain accurate and stable operation under deviations of the grid frequency by using the Lagrange interpolation-based finite-impulse-response (LIFIR) filter approximation method. The proposed control schemes were validated through a simulation and experiment.

The DC Link Energy Control Method of Dynamic Voltage Restorer System (DVR(Dynamic Voltage Restorer)에서의 직류에너지 제어 방법)

  • Jeong, Il-Yeop;Park, Sang-Yeong;Won, Dong-Jun;Mun, Seung-Il;Park, Jong-Geun;Han, Byeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.575-583
    • /
    • 2001
  • Dynamic Voltage Restorer(DVR) which is installed between the supply and a critical load can restore voltage disturbances in distribution system. The restoration is based on injecting the same voltages as voltage sags. The ideal restoration is compensation to make the load voltages be unchanged. But voltage restoration involves real power or energy injection and the capability of energy storage is limited. So it must be considered how injection energy can be minimized and voltages can be made close to the voltages before fault. This paper describes conventional restoration techniques, which draw minimum energy from the DVR in order to correct a given voltage sag or swell. And this paper proposes a new concept of restoration technique to inject minimum energy. The proposed method is based on the definition of voltage tolerance in load side. Hence using the proposed method a particular disturbance can be corrected with less amount of storage energy compared to those of conventional methods.

  • PDF

Voltage Variation Compensation of Power Distribution System Using a Quasi Z-Source Dynamic Voltage Restorer (Quasi Z-소스 동적 전압 보상기를 사용한 배전계통의 전압변동 보상)

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.400-401
    • /
    • 2011
  • 본 논문에서는 단상 Quasi Z-source AC/AC converter 2대의 출력을 직렬로 연결하여 6.6[kV]/60[Hz]의 배전계통의 전압변동을 보상하는 시스템을 제안하였다. 제안된 시스템은 기존의 단상 Quasi Z-source AC/AC converter의 전압변동 보상기가 보상 못 하는 구간, 즉 배전계통에서 많이 발생하는 50[%] 미만의 전압 sag를 보상할 수 있는 장점이 있다. PSIM시뮬레이션에 의하여, 제안된 방법은 정상전압에 대하여 연속적으로 전압변동이 발생하여도 보상할 수 있었다.

  • PDF