• Title/Summary/Keyword: Voltage Instability

Search Result 199, Processing Time 0.026 seconds

A Design of a PI Compensator for a Bidirectional DC-DC Converter in a DC Distributed Power System

  • Lee, Joonmin;Seok, Bong Jun;La, Jae Du;Kim, Young Seok
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.391-396
    • /
    • 2012
  • The Voltage Bus Conditioner(VBC) is a bidirectional DC-DC converter for damping the instability and any transients of the bus voltage in a DC Distributed Power System(DPS). In this paper, a PI controller for the VBC has been designed for the frequency domain. The proposed PI controller not only dampens the bus transients, but also keeps the storage voltage level. Simulation by Matlab/Simulink and experimental results are presented for the validity of the proposed control technique.

Stability Analysis of Induction Motor Driven by Stator Voltage Controlled CSI (고정자전압제어 전류형 인버터에 의한 유도전동기 구동시스템의 안정도 해석)

  • Song, Joong-Ho;Yoon, Tae-Woong;Youn, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. It can be seen, especially that an introduction of the indirect frequency control method improves the inherent instability of the current source inverter drive system for the induction motor. The overall control systems with either voltage control loop or current and voltage control loops in addition to each frequency control scheme, are analyzed by utilizing the root locus method and simulated by computer to show the validity of this analysis.

A Study on the Out-of-Step Detection Algorithm using Voltage Frequency Variation (전압의 주파수 변화를 이용한 동기탈조 검출 알고리즘에 관한 연구)

  • So, K.H.;Heo, J.Y.;Kim, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.335-337
    • /
    • 2003
  • The protection against transient instability and consequent out-of-step condition is a major concern for the utility. The unstable system may cause serious damage to system elements such as generators and transmission lines. Therefore, out-of-step detection is essential to operate a system safely. This paper presents the Out-of-Step detection algorithm using voltage frequency variation. The digital filters based on Discrete Fourier Transforms (DFT) to calculate the frequency of a sinusoid voltage are used, and the generator angle is estimated using the variation of the calculated voltage frequency. The proposed out-of-step algorithm is based on the assessment of a transient stability using equal area criterion. The proposed out-of-step algorithm is verified and tested by using EMTP MODELS.

  • PDF

Characteristics of Premixed Propane Flame in Electric Field according to Electrode Position (전극위치에 따른 전기장 내 프로판 예혼합 화염의 특성)

  • Taehun Kim;Minseok Kim;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.134-142
    • /
    • 2023
  • Electric field assisted combustion is a method that reduces instability in lean combustion. In this study investigated the effects of electrode position on propane-air flame characteristic using a ring electrode. Results showed that burning velocity was not affected by electrode position, but positive voltage expanded the flammability limit while negative voltage contracted it. The effect of voltage polarity on the flammability limit decreased as the electrode position increased. Expanding the flammability limit with a positive voltage can reduce NOx emissions.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory

  • Arefi, Mohammad;Pourjamshidian, Mahmoud;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • In this research, the dynamic instability region (DIR) of the sandwich nano-beams are investigated based on nonlocal strain gradient elasticity theory (NSGET) and various higher order shear deformation beam theories (HSDBTs). The sandwich piezoelectric nano-beam is including a homogenous core and face-sheets reinforced with functionally graded (FG) carbon nanotubes (CNTs). In present study, three patterns of CNTs are employed in order to reinforce the top and bottom face-sheets of the beam. In addition, different higher-order shear deformation beam theories such as trigonometric shear deformation beam theory (TSDBT), exponential shear deformation beam theory (ESDBT), hyperbolic shear deformation beam theory (HSDBT), and Aydogdu shear deformation beam theory (ASDBT) are considered to extract the governing equations for different boundary conditions. The beam is subjected to thermal and electrical loads while is resting on Visco-Pasternak foundation. Hamilton principle is used to derive the governing equations of motion based on various shear deformation theories. In order to analysis of the dynamic instability behaviors, the linear governing equations of motion are solved using differential quadrature method (DQM). After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various shear deformation theories, nonlocal parameter, strain gradient parameter, the volume fraction of the CNTs, various distributions of the CNTs, different boundary conditions, dimensionless geometric parameters, Visco-Pasternak foundation parameters, applied voltage and temperature change on the dynamic instability characteristics of sandwich piezoelectric nano-beam.

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

Robust algorithm for estimating voltage stability by the modified method of sensitivity index dP/de of real value on voltage vector (전압벡터의 유효분 감도지표 dP/de 수정법에 의한 견고한 전압안정도 평가에 관한 연구)

  • 송길영;김세영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Recently, much attention has been paid to problems which is concerned with voltage instability phenomena and much works on these phenomena have been made. In this paper, by substituting d $P_{k}$ d $e_{k}$ ( $v^{\rarw}$= e +j f) for $P_{k}$ in conventional load flow, direct method for finging the limit of voltage stability is proposed. Here, by using the fact that taylor se- ries expansion in .DELTA. $P_{k}$ and .DELTA. $Q_{k}$ is terminated at the second-order terms, constraint equation (d $P_{k}$ d $e_{k}$ =0) and power flow equations are formulated with new variables .DSLTA. e and .DELTA.f, so partial differentiations for constraint equation are precisely calculated. The fact that iteratively calculated equations are reformulated with new variables .DELTA.e and .DELTA.f means that limit of voltage stability can be traced precisely through recalculation of jacobian matrix at e+.DELTA.e and f+.DELTA.f state. Then, during iterative process divergence may be avoid. Also, as elements of Hessian mat rix are constant, its computations are required only once during iterative process. Results of application of the proposed method to sample systems are presented. (author). 13 refs., 11 figs., 4 tab.

  • PDF

A Method of Vulnerable Area Selection for Voltage Stability Using the Variation Rate of Reactive Power Margin (무효전력 여유변화를 이용한 전압안정성 취약지역 선정)

  • Cho, Yoon-Hyun;Seo, Sang-Soo;Lee, Byong-Jun;Kim, Tae-Kyun;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.251-254
    • /
    • 2003
  • A voltage stability assessment consists of the contingency screening, voltage stability analysis, and counter measures. A widely used index for the voltage stability assessment of power system is the reactive power margin. It shows some factors of voluntariness as following the status of power system and load levels for the target analyzing area. Therefore, it has a demerit that the absolute amounts of reactive power margin is not to be applied by the quantized margin criterion. This paper selects a vulnerable area by assigning the voltage instability for the particular contingency for the selection of vulnerable area in the respect of the investigation of reactive power margin or VQVI as an index of V-Q margin sensitivity in order to overcome the demerit. This will be able to grasp the V-Q margin sensitivity for the target analyzing area by presenting the ratio of power margin between the margin before and after contingency as following the calculation of reactive power margin. The presented method is applied to the voltage stability assessment for the Metropolitan area of 2003 KEPCO summer peak system.

  • PDF

The design of adaptive Controller for the Voltage Bus Conditioner for the improvement of the Power Quality in the DC Power Distribution System (DC 배전시스템의 품질향상을 위한 VBC 적응제어)

  • Woo, Hyun-Min;Lee, Byung-Hun;Chang, Han-Sol;La, Jae-Du;Kim, Young-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2348-2356
    • /
    • 2011
  • In recent years, many researches for DC power distributed system (PDS) are being preformed and the importance of the DC PDS is more and more emphasized. Furthermore, in the railway system, the DC PDS is used in subway station lighting, facilities, etc. In the DC PDS, DC bus voltage instability may be occurred by the operation of multiple parallel loads such as pulsed power load, motor drive system, and constant power loads. Thus, good quality and high reliability for electric power are required and voltage bus conditioner (VBC) may be used the DC PDS. The VBC is a DC/DC converter for mitigation of the bus transients. In this paper, adaptive controller is designed. The simulation results by PSIM are presented for validating the proposed control algorithm.

  • PDF