• Title/Summary/Keyword: Voltage Compensator

Search Result 401, Processing Time 0.032 seconds

A Study on the Rise for Rate of Operation in Utility Interactive Photovoltaic System (계통연계형 PV시스템의 가동률 향상에 관한 연구)

  • Han Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.97-100
    • /
    • 2004
  • Our country has depended on fossil fuel very much according to the Increasing of the demand of the electric power. For instance, if the reduction and freezing caused by the warm gas in earth by the regulation of international environment happen in Korea it will bring about the result of weakness in industrial activity. As a result, it will cause many problems to compete an advanced country which wants to connect environment with the activity of industrial product in their country. The photovoltaic system outputs have peak about a half past 13 o'clock(before and after) mainly in a good weather. The output decreases rapidly from a half past 17 o'clock and PV output doesn't work at six o'clock before the sun rises. The outputs of PV system stops at that time. The frequent degree of harmonics in dwelling house which lots of people live has peak from 19 o'clock to 22 o'clock Harmonics mainly happens at least at night. In recent, many researches about power quality has been studying very hard in order to solve the question, the voltage fluctuating and harmonics as one compensator. In this paper, I suggest the algorithm which can increase the power quality as a rate of operation of this system. This algorithm proves to have effectiveness through computer simulation.

  • PDF

Implementation of the Controller for a Stable Walking of a Humanoid Robot Using Improved Genetic Algorithm (개선된 유전 알고리즘 기반의 휴머노이드 로봇의 안정 보행을 위한 제어기 구현)

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.399-405
    • /
    • 2007
  • This paper deals with the controller for a stable walking of a humanoid robot using genetic algorithm. A humanoid robot has instability during walking because it isn't fixed on the ground, and its nonlinearities of the joints increase its instability. If controller isn't robust, the robot may fall down at the ground during walking because of its nonlinearities. To solve this problem, robust controller is required to reduce the effect of nonlinearities and to gain the good tracking performance. In this paper, motion controller that is based on fuzzy-sliding mode controller is proposed. This controller can remove the effect of the saturation by limitation of the input voltage. It also includes compensator for reducing the effect of the nonlinearity by backlash and PI controller improving the tracking performance. In here, genetic algorithm is used for searching the optimal gains of the controller. From the given controller, a humanoid robot can moved more preciously. All the processes are investigated through simulations and are verified experimentally in a real joint system for a humanoid robot.

The secondary excited induction generator in random wave input system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.209-214
    • /
    • 2009
  • The employment of the induction generator is preferable in the natural energy utilization by the minimum maintenance and the mechanical robustness, Another merit is also expected when it is connected to the power network system, because constant-voltage and constant frequency (CVCF) power generation is easily realized in spite of the variation of the rotor speed. However the induction generator needs much amount of the reactive power that reduces power factor in the primary side. The improvement of power factor in the primary side requires large VAR compensator, this point is solved, the merit of the induction machine as a main generator will become more established. This paper proposes a novel approach where the secondary is controlled by a PWM inverter not only to get CVCF power but also to improve the primary power factor. Basically the inverter is controlled so that the field current is supplied from the secondary side in this approach. The required capacity of the inverter is small, because only the slip power is controlled in the secondary side. In the experimental system where the sea wave torque simulator is used, the power factor is well improved by the microcomputer controlled PWM inverter.

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

A Design of Power System Stabilization for SVC System Using Self Tuning Fuzzy Controller (자기조정 퍼지제어기를 이용한 SVC계통의 안정화 장치의 설계)

  • Joo, Seok-Min;Hur, Dong-Ryol;Kim, Hai-Jai
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

Design of GA-LQ Controller in SVC for Power System Stability Improvement (전력시스템 안정도 향상을 위한 SVC용 GA-LQ 제어기 설계)

  • Hur, D.R.;Park, I.P.;Chung, M.K.;Chung, H.H.;Ahn, B.C.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.226-228
    • /
    • 2002
  • This paper presents a new control approach for designing a coordinated controller for static VAR compensator system. A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. A design of linear quadratic controller based on optimal controller depends on choosing weighting matrices. A coordinated optimal controller is achieved by minimizing a quadratic performance index using dynamic programming techniques. The selection of weighting matrices is usually carried out by trial and error which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Four-switch Three-phase Inverter control method applied by simplified Space Vector PWM (간략화 된 SVPWM을 적용한 4-Switch 3-Phase Inverter의 제어 방법)

  • Son, Sang-Hun;Park, Young-Joo;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.283-292
    • /
    • 2016
  • The performance of 4-switch 3-phase inverter(: FSTPI) which replace two switches of 6-switch 3-phase inverter(: SSTPI) is mainly affected by the compensator unbalanced voltages and output voltage control method. This paper proposes a DC offset current injection method to compensate the capacitor unbalanced voltages for FSTPI. A simplified SVPWM method which can be applied to FSTPI is also proposed. The validity of the proposed methods is verified by simulation and experiment using SPMSM.

Pumping-up Current Characteristics of Linear Type Magnetic Flux Pump

  • Chung, Yoondo;Muta, Itsuya;Hoshino, Tsutomu;Nakamura, Taketsune;Ko, Taekuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2004
  • The linear type flux pump aims to compensate a little bit decremental persistent current of the HTS magnet in NMR and MRI spectrometers. The flux pump mainly consists of DC bias coil, 3-phase AC coil and Nb foil. The persistent current in closed superconductive circuit can be easily adjusted by the 3-phase AC current, its frequency and the DC bias current. In the experiment, it has been investigated that the flux pump can effectively charge the current in the load coil of 543 mH for various frequencies in 18 minutes under the DC bias of 10 A and the AC of 5 $A_{rms}$. The maximum magnitudes of pumping current and load magnet voltage are 0.72 A/min and 20 ㎷, respectively. Based on simulation results by the FEM are proved to nearly agree with experimental ones.

Influence Analysis of Grid Connected Wind Power Generator by Line Constants (풍력발전 계통연계시 선로정수에 따른 계통 영향 분석)

  • Choy, Young-Do;Kwak, No-Hong;Jeon, Young-Soo;Jeon, Dong-Hoon;Han, Byung-Moon;Yun, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문은 고창 전력품질 실증시험장에서 실 계통 연계를 위해 시험 중인 1.5M급 풍력발전 시뮬레이터의 선로정수를 PSCAD/EMTDC를 이용하여 모의하고 선로정수에 따른 풍력발전시스템이 계통에 미치는 영향을 분석하는데 중점을 두었다. 현재 고창에 설치되어있는 전력품질 실증시험장은 22.9kV 급전선에 SSTS(Synchronous Static Transfer Switch)의 한쪽 스위치로 직접 연결되어있으며 다른 한 쪽은 전력계통에서 발생되는 다양한 형태의 이벤트를 발생시키는 SSHG(Sag Swell Harmonics Generator)를 통하여 연결되어있다. 전력품질 향상기기중 하나인 DVR(Dynamic Voltage Restorer)는 SSTS의 부하쪽으로 직렬로 연결되어있으며 delta-wye 변압기를 통해 정류기 부하와 APF(Active Power Filter), 그리고 순저항부하와 유도성부하가 연결되어 있고 또한 SSHG를 통하여 연결된 배전선에는 DSTATCOM(Distribution Static Compensator)가 병렬로 연결되어있다. 본 논문에서는 고창에 있는 풍력발전 시뮬레이터와 동일하게 PSCAD/EMTDC로 구성하였으며 선로정수를 모델링 하기 위해 선로모델을 10Km, 20Km, 30Km, 40Km,로 설정하여 선로정수에 따른 계통영향을 분석하여 풍력발전 시뮬레이터에서 모의가능 한 선로정수 값을 제시한다.

  • PDF

Modeling and Control of Integrated STATCOM-SMES System to Improve Power System Oscillations Damping

  • Molina, Marcelo G.;Mercado, Pedro E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.528-537
    • /
    • 2008
  • Primary frequency control(PFC) has the ability to regulate short period random variations of frequency during normal operation conditions and also to respond rapidly to emergencies. However, during the past decade, numerous significant sized blackouts occurred worldwide that resulted in serious economic losses. Therefore, the conclusion has been reached that the ability of the current PFC to meet an emergency is poor, and security of power systems should be improved. An alternative to enhance the PFC and thus security is to store excessive amounts of energy during off-peak load periods in efficient energy storage systems for substituting the primary control reserve. In this sense, superconducting magnetic energy storage(SMES) in combination with a static synchronous compensator(STATCOM) is capable of supplying power systems with both active and reactive powers simultaneously and very rapidly, and thus is able to enhance the security dramatically. In this paper, a new concept of PFC based on incorporating a STATCOM-SMES is presented. A complete detailed model is proposed and a new control scheme is designed, comprising an enhanced frequency control scheme, and a fully decoupled current control strategy in d-q coordinates with a novel controller to prevent dc bus capacitors voltage drift/imbalance. The performance of the proposed control schemes is validated through digital simulation carried out using MATLAB/Simulink.