• Title/Summary/Keyword: Volatility index

Search Result 190, Processing Time 0.024 seconds

Modeling Implied Volatility Surfaces Using Two-dimensional Cubic Spline with Estimated Grid Points

  • Yang, Seung-Ho;Lee, Jae-wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2010
  • In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.

Deep learning forecasting for financial realized volatilities with aid of implied volatilities and internet search volumes (금융 실현변동성을 위한 내재변동성과 인터넷 검색량을 활용한 딥러닝)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.93-104
    • /
    • 2022
  • In forecasting realized volatility of the major US stock price indexes (S&P 500, Russell 2000, DJIA, Nasdaq 100), internet search volume reflecting investor's interests and implied volatility are used to improve forecast via a deep learning method of the LSTM. The LSTM method combined with search volume index produces better forecasts than existing standard methods of the vector autoregressive (VAR) and the vector error correction (VEC) models. It also beats the recently proposed vector error correction heterogeneous autoregressive (VECHAR) model which takes advantage of the cointegration relation between realized volatility and implied volatility.

Information in the Implied Volatility Curve of Option Prices and Implications for Financial Distribution Industry (옵션 내재 변동성곡선의 정보효과와 금융 유통산업에의 시사점)

  • Kim, Sang-Su;Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.

Capital Market Volatility MGARCH Analysis: Evidence from Southeast Asia

  • RUSMITA, Sylva Alif;RANI, Lina Nugraha;SWASTIKA, Putri;ZULAIKHA, Siti
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.117-126
    • /
    • 2020
  • This paper is aimed to explore the co-movement capital market in Southeast Asia and analysis the correlation of conventional and Islamic Index in the regional and global equity. This research become necessary to represent the risk on the capital market and measure market performance, as investor considers the volatility before investing. The time series daily data use from April 2012 to April 2020 both conventional and Islamic stock index in Malaysia and Indonesia. This paper examines the dynamics of conditional volatilities and correlations between those markets by using Multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH). Our result shows that conventional or composite index in Malaysia less volatile than Islamic, but on the other hand, both drive correlation movement. The other output captures that Islamic Index in Indonesian capital market more gradual volatilities than the Composite Index that tends to be low in risk so that investors intend to keep the shares. Generally, the result shows a correlation in each country for conventional and the Islamic index. However, Internationally Indonesia and Malaysia composite and Islamic is low correlated. Regionally Indonesia's indices movement looks to be more correlated and it's similar to Malaysian Capital Market counterparts. In the global market distress condition, the diversification portfolio between Indonesia and Malaysia does not give many benefits.

The Impacts of Oil Price and Exchange Rate on Vietnamese Stock Market

  • NGUYEN, Tra Ngoc;NGUYEN, Dat Thanh;NGUYEN, Vu Ngoc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.143-150
    • /
    • 2020
  • This study aims to investigate the effect of oil price and exchange rate on the two Vietnamese stock market indices: VN index and HXN index. This study uses the daily data from August 1st 2000 to October 25th 2019 of the two Vietnamese stock indices: VN index and HNX index, the two oil price indices: BRENT and WTI, and the two exchange rates: US dollar to Vietnamese dong and Euro to Vietnamese dong. Due to the presence of heteroskedasticity in our data, we use GARCH (1,1) regression model to perform our analysis. Our findings show that the oil price has a significant positive effect on the two Vietnamese stock market indices. In terms of the stock index volatility, both the VN index and HNX index volatilities are negatively impacted by the return of oil price. While the conclusion about the impact of oil price remained consistent through all three robustness tests, the effect of exchange rate on Vietnamese stock market indices is not consistent. We find thatchanges of the USD/VND exchange rate significantly impact the return and volatility of HNX index only in GARCH (1,1) setting. Our analysis also survives a number of robustness tests.

Estimation of KOSPI200 Index option volatility using Artificial Intelligence (이기종 머신러닝기법을 활용한 KOSPI200 옵션변동성 예측)

  • Shin, Sohee;Oh, Hayoung;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1423-1431
    • /
    • 2022
  • Volatility is one of the variables that the Black-Scholes model requires for option pricing. It is an unknown variable at the present time, however, since the option price can be observed in the market, implied volatility can be derived from the price of an option at any given point in time and can represent the market's expectation of future volatility. Although volatility in the Black-Scholes model is constant, when calculating implied volatility, it is common to observe a volatility smile which shows that the implied volatility is different depending on the strike prices. We implement supervised learning to target implied volatility by adding V-KOSPI to ease volatility smile. We examine the estimation performance of KOSPI200 index options' implied volatility using various Machine Learning algorithms such as Linear Regression, Tree, Support Vector Machine, KNN and Deep Neural Network. The training accuracy was the highest(99.9%) in Decision Tree model and test accuracy was the highest(96.9%) in Random Forest model.

How Does Economic News Affect S&P 500 Index Futures? (거시경제변수가 S&P 500 선물지수에 어떤 영향을 미치는가?)

  • So, Yung-Il;Ko, Jong-Moon;Choi, Won-Kun
    • The Korean Journal of Financial Management
    • /
    • v.13 no.1
    • /
    • pp.341-357
    • /
    • 1996
  • Some empirical studies have shown that asset prices respond to announcements of economic news, however, others also have found little evidence. This study assesses how market participants of the S&P 500 Index Futures reacted to the U.S. economic news announcements. For this purpose, using a GARCH (Generalized Autoregressive Conditional Heteroscedasticity) model, we use several U.S. news variables, its each surprise component and interest rates. We find that some economic news variables affected significantly on the S&P 500 Index Futures. In other words, we find that weekend variable, lagged volatility, and surprise component of trade deficit increased level of volatility. However, interest rate, M1, unemployment announcements caused the variance of the S&P 500 Index Futures to reduce, and each of the surprise component of M1 and trade deficit increased it. The result suggests that resolution of uncertainty, through economic news announcement, while, in some cases, causes market participants to reduce their forecast of volatility, a large difference between the market's forecast and the realization of the series causes the volatility to increase.

  • PDF

Information Spillover Effects among the Stock Markets of China, Taiwan and Hongkon (국제주식시장의 정보전이효과에 관한 연구 : 중국, 대만, 홍콩을 중심으로)

  • Yoon, Seong-Min;Su, Qian;Kang, Sang Hoon
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.62-84
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.

Dynamic Glide Path using Retirement Target Date and Forecast Volatility (은퇴 시점과 예측 변동성을 고려한 동적 Glide Path)

  • Kim, Sun Woong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.82-89
    • /
    • 2021
  • The objective of this study is to propose a new Glide Path that dynamically adjusts the risky asset inclusion ratio of the Target Date Fund by simultaneously considering the market's forecast volatility as well as the time of investor retirement, and to compare the investment performance with the traditional Target Date Fund. Forecasts of market volatility utilize historical volatility, time series model GARCH volatility, and the volatility index VKOSPI. The investment performance of the new dynamic Glide Path, which considers stock market volatility has been shown to be excellent during the analysis period from 2003 to 2020. In all three volatility prediction models, Sharpe Ratio, an investment performance indicator, is improved with higher returns and lower risks than traditional static Glide Path, which considers only retirement date. The empirical results of this study present the potential for the utilization of the suggested Glide Path in the Target Date Fund management industry as well as retirees.

Forecasting Long-Memory Volatility of the Australian Futures Market (호주 선물시장의 장기기억 변동성 예측)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.14 no.2
    • /
    • pp.25-40
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.