• Title/Summary/Keyword: Volatile constituents

Search Result 137, Processing Time 0.025 seconds

Effective Removal of Gaseous BTEX Using VPB During Treatment of Briny Produced Water (VPB를 이용한 효율적인 Gas 상태의 BTEX 제거에 관한 연구)

  • Kwon, Soondong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.167-177
    • /
    • 2011
  • Billions of barrels of briny produced water are generated in the United States every year during oil and gas production. The first step toward recovering or reusing this water is to remove the hazardous organics dissolved in the briny produced water. Biological degradation of hazardous volatile compound could be possible regardless of salinity if they were extracted from briny water. In the current work, the effectiveness of a vapor phase biofilter to degrade the gas-phase contaminants (benzene, toluene, ethylbenzene and xylenes, BTEX) extracted from briny produced water was evaluated. The performance of biofilter system responded well to short periods when the BTEX feed to the biofilter was discontinued. To challenge the system further, the biofilter was subjected to periodic spikes in inlet BTEX concentration as would be expected when it is coupled to a Surfactant-Modified Zeolite (SMZ) bed. Results of these experiments indicate that although the BTEX removal efficiency declined under these conditions, it stabilized at 75% overall removal even when the biofilter was provided with BTEX-contaminated air only 8 hours out of every 24 hours. Benzene removal was found to be the most sensitive to time varying loading conditions. A passive, granular activated carbon bed was effective at attenuating and normalizing the peak BTEX loadings during SMZ regeneration over a range of VOC loads. Field testing of a SMZ bed coupled with an activated carbon buffering/biofilter column verified that this system could be used to remove and ultimately biodegrade the dissolved BTEX constituents in briny produced water.

Anti-nociceptive and anti-inflammatory activities of the essential oil isolated from Cupressus arizonica Greene fruits

  • Fakhri, Sajad;Jafarian, Safoora;Majnooni, Mohammad Bagher;Farzaei, Mohammad Hosein;Mohammadi-Noori, Ehsan;Khan, Haroon
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Background: Cupressus arizonica Greene is a coniferous tree with great importance in fragrance and pharmaceutical industries. Essential oils from C. arizonica (EC) have shown potential antioxidant, and anti-microbial activities. This study aimed at investigating the anti-nociceptive and anti-inflammatory effects/mechanisms of EC. Methods: The EC was evaluated for anti-nociceptive and anti-inflammatory activities on male Wistar rats using a formalin test and carrageenan-induced paw edema, respectively. Also, we pre-treated some of the animals with naloxone and flumazenil in the formalin test to find out the possible contributions of opioid and benzodiazepine receptors to EC anti-nociceptive effects. Finally, gas chromatography/mass spectrometry (GC/MS) analysis was used to identify the EC's constituents. Results: EC in intraperitoneal doses of 0.5 and 1 g/kg significantly decrease the nociceptive responses in both early and late phases of the formalin test. From a mechanistic point of view, flumazenil administration 20 minutes before the most effective dose of EC (1 g/kg) showed a meaningful reduction in the associated anti-nociceptive responses during the early and late phases of the formalin test. Naloxone also reduced the anti-nociceptive role of EC in the late phase. Furthermore, EC at the doses of 1, 0.5, and 0.25 g/kg significantly reduced paw edema from 0.5 hours after carrageenan injection to 4 hours. GC/MS analysis showed that isolated EC is a monoterpene-rich oil with the major presence of α-pinene (71.92%), myrcene (6.37%), δ-3-carene (4.68%), β-pinene (3.71%), and limonene (3.34%). Conclusions: EC showed potent anti-nociceptive and anti-inflammatory activities with the relative involvement of opioid and benzodiazepine receptors.

Analysis of volatile compounds and metals in essential oil and solvent extracts of Amomi Fructus (사인으로부터 추출한 정유와 용매 추출물의 휘발성 물질 및 금속성분 분석)

  • Lee, Sam-Keun;Eum, Chul Hun;Son, Chang-Gue
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.436-445
    • /
    • 2015
  • Amomi Fructus with anti-oxidative activity was chosen and essential oil was obtained by SDE (simultaneous distillation extraction), and 39 constituents were determined by GC-MS (gas chromatography-mass spectrometry). Major components were camphor, borneol acetate, borneol, D-limonene and camphene. Three solvent extracts such as hexanes, diethyl ether and methylene chloride from Amomi Fructus were obtained. These were analyzed by GC-MS and 4 more constituents were identified in addition to 39 components discovered in essential oil. Five major components such as camphor, borneol acetate, borneol, D-limonene and camphene were also detected, however the relative peak percents of those components were different from those of constituents in essential oil. To estimate the kind and the amount of materials evaporated at certain temperature and conditions from essential oil and solvent extracts, dynamic headspace apparatus was used and materials evaporated and trapped at certain conditions were analyzed by GC-MS. Recovery yield of SDE method from Amomi Fructus was measured by using camphor and standard calibration solution of camphor methanol solution and, the yield was 82.0%. Content of Hg was measured by mercury analyzer and contents of Cd, Pb, Cr, Mn, Co, Ni, Cu and Zn in Amomi Fructus, essential oils and solvent extracts were determined by ICP-MS (Inductively coupled plasma-mass spectrometer). Pb, Cd and Hg were measured in the concentration of 0.72 mg/kg, <0.10 mg/kg and 0.0023 mg/kg, respectively and these were below permission level of purity test. Contents of Mn, Cu and Zn in Amomi Fructus were 213 mg/kg, 8.29 mg/kg and 31.0 mg/kg, respectively and which were relatively higher than other metals such as Cr, Co and Ni. Metals such as Mn (0.65 ~ 9.08 mg/kg), Cu (1.16 ~ 4.40 mg/kg) and Zn (1.10 ~ 3.80 mg/kg) in essential oil and solvent extracts were detected. At this point it is not clear that the metals were cross-contaminated in the course of treating Amomi Fructus or metals were contained in Amomi Fructus. The influence evaluation toward biological model study of these metals in essential oil and solvent extracts will be needed.

Isolation and Identification of Low Molecular Volatile Compounds from Ethyl Acetate Layer of Korean Black Raspberry (Rubus coreanus Miq.) Wine (복분자(Rubus coreanus Miquel) 와인의 ethyl acetate 획분으로부터 저분자 휘발성 화합물들의 분리 및 구조해석)

  • Cho, Jeong-Yong;Kim, Seong-Ja;Lee, Hyoung-Jae;Kim, Jin-Young;Lym, Ik-Jae;Kang, Seong-Koo;Park, Keun-Hyung;Moon, Jae-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.558-563
    • /
    • 2011
  • In the course of our investigation for chemical constituents in the ethyl acetate layer of Korean black raspberry wine, five compounds were isolated and purified by silica gel column chromatography and high-performance liquid chromatography. The isolated compounds were identified as ethyl succinate (1), vanillic acid (2), ethyl 3,4-dihydroxybenzoate (3), furan-2-ol (4), and 4-(4-hydroxyphenyl)butan-2(S)-ol (5) based on the spectroscopic data of electrospray ionization tandem mass spectrometry and nuclear magnetic resonance. The presence of 2 in Korean black raspberry has previously reported. However, 1 and 3-5 in Korean black raspberry and its wine were isolated for the first time.

Changes of physiochemical properties of LOX-3 null rice lines stored at different storage temperatures and periods

  • Shin, Woon-Chul;Kim, Jeong-Ju;Park, Hyun-Su;Jeong, Jong-Min;Baek, Man-Kee;Nam, Jeong-Kwon;Park, Seul-Gi;Kim, Choon-Song;Cho, Young-Chan;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.69-69
    • /
    • 2017
  • Due to the lack in storage facility, considerable amount of rice is stocked in the open air, which causes increased stale flavor and deteriorates palatability and merchantable quality. Lipoxygenase-3(LOX-3) is involved in the production of volatile constituents in stored rice, and the development of stale flavor is delayed in LOX-3 null rice. LOX activity in the rice grain is localized in bran fraction and the tropical Japonica cultivar 'Dawdam' was reported that the absence of LOX-3 is inherited as a simple recessive trait. Also, it was reported that the peroxidation of unsaturated fatty acids occurs at lower levels in the 'Dawdam' bran fraction during storage than in rice varieties with LOX-3. This study was conducted to develop LOX-3 null rice lines using 'Dawdam' and investigate changes of physicochemical properties of the lines stored at different storage temperatures and periods. So we analyzed texture, toyo glossiness value, germination rate and lipoxygenase activity of 15 LOX-3 null rice lines on the condition of which rough rice had been stored at different temperatures (high temperature condition at $35^{\circ}C$ and low temperature condition at $15^{\circ}C$ for 4months. Hardness and stickiness of the lines tendered to be increased when it was stored at high temperature and adhesiveness, springiness, cohesiveness and chewiness was not considerably different according to storage temperatures and periods. The germination rate of HR29062-B-98-2-1-B among LOX-3 null rice lines was higher than another lines, 99.3, 94.0% after 4months stored at low temperature and high temperature, respectively. The lipoxygenase activity was 3,304, 1,601unit/mg protein after 4months stored at low temperature and high temperatures, respectively. So, it is thought that this line will be useful to breed rice varieties with high storability after tested on agricultural traits.

  • PDF

Relationships of TVOC with Several Aromatic Hydrocarbon Constituents at Preschool Facilities

  • Yoon, Chung-Sik;Choi, In-Ja;Ha, Kwon-Chul;Park, Dong-Uk;Park, Doo-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.404-411
    • /
    • 2006
  • 이 연구의 목적은 유치원에서 총 휘발성 유기화합물의 농도를 평가하고, 총 휘발성 유기화합물 농도와 대표적인 8개 방향족 화합물의 상관관계를 조사하는데 있다. 도시에 위치한 11개 유치원의 실내와 실외에서 각각 30개, 11개의 지역시료를, 시골에 위치한 4개 유치원에서는 각각 10개, 4개의 시료를 테낙스 튜브를 이용하여 오전에 1-2시간 채취하였다. 채취한 시료는 열탈착하여 가스크로마토그래피-질량분석기로 분석하였다. 13가지 물질을 각각의 표준물질로 개별 정량하여 이중 빈번히 발견되는 8가지 방향족 유기화합물은 상관관계 평가에 사용하였다. 총 휘발성 유기화합물은 톨루엔을 기준으로 정량하였다. 도시에 위치한 유치원 실내의 총 휘발성 유기화합물 농도가 높았고, 조사 건수의 50%가 환경부 및 교육인적자원부의 가이드라인($400{\mu}g/m^{3}$)을 초과하였다. 도시지역의 유치원 실내 및 실외의 기하평균은 각각 $387.9{\mu}g/m^{3}$$134.9{\mu}g/m^{3}$이었고, 시골지역 유치원에서는 각각 $189.6{\mu}g/m^{3},;74.4{\mu}g/m^{3}$이었다. 톨루엔, 크실렌, 에틸벤젠, 정량한 유기 화합물 총합, 총 휘발성 유기화합물은 기하정규분포를 하였다. 벤젠, 톨루엔, 에틸벤젠, 크실렌(BTEX)은 도시에 위치한 유치원에서 농도도 높고, 총 휘발성 유기화합물중 함량도 높았고, 시골지역에서는 농도와 상대적 함량이 낮았다. 도시지역에서는 총 휘발성 유기화합물 중 BTEX의 비중이 25.2%였고 정량한 13가지 유기화합물 중에서는 35.6%를 차지하였다. BTEX 각각 개별물질은 미국 환경보호청이 제시하는 일일 노출 기준량(Reference Concentration; RfC) 보다는 현저히 낮았다. 총 휘발성 유기화합물읜 농도는 실내가 실외 보다 높았다(I/O ratio 2.5). BTEX의 상대적 함량도 실내가 실외보다 높아 실내에도 발생원이 있음을 암시하고 있다. 자료 분석결과 유치원 실내의 벤젠은 실외로부터 유입되고 있었고, 톨루엔, 에틸벤젠, 크실렌은 실외뿐 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.

Non-traditional Straws: Alternate Feedstuffs for Ruminants

  • Kaushal, S.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1722-1727
    • /
    • 2006
  • The nutritive value of 4 straws, obtained after thrashing of seeds from fodder crops, was assessed as complete feed for ruminants. Sixteen male Murrah buffaloes (liveweight 365.8${\pm}$19.5 kg), were divided into 4 equal groups and offered ad lib. straw of either Trifolium resupinatum, Trifolium alexandrium, Medicago sativa or Lolium perenne, supplemented with minerals and vitamin A, for 40 days in a completely randomized design. Simultaneously, each straw was offered to 3 rumen fistulated male buffaloes in order to assess the biochemical changes in the rumen. Compared to other straws M. sativa straw had higher (p<0.05) organic matter (OM), crude protein (CP), acid-detergent fiber (ADF) and cellulose content. L .perenne had the highest (p<0.05) hemicellulose and lowest (p<0.05) CP and acid-detergent lignin (ADL) content. T. resupinatum had the lowest concentration of cell wall constituents (CWC). The digestibility of nutrients of T. resupinatum and L. perenne straw was similar, but higher (p<0.05) than that of other straws. M.sativa straw showed highest (p<0.05) digestibility of CP. The highest OM digestibility of T. resupinatum and CP digestibility of M. sativa were responsible for highest (p<0.05) total volatile fatty acids and trichloroacetic acid precipitable nitrogen in the strained rumen liquor. The digestible crude protein (DCP) was highest (p<0.05) in M. sativa followed by that in T. alexandrium. The total purine derivatives excreted in urine varied from 0.22-0.32 mmol/kg $W^{.75}/d$. The efficiency of microbial protein synthesis indicated that OM of straws of M. sativa and that of T. alexandrium was used more (p<0.05) efficiently. The microbial protein synthesized was highest in T. resupinatum, but statistically similar to other groups. The values for N-retention and apparent biological value were highest for L. perenne, though comparable with that of M. sativa and T. alexandrium. The available metabolizable energy (ME) was highest (p<0.05) in T. resupinatum followed by that in L. perenne and lowest in M. sativa. It was concluded that all the straws, supplemented with minerals and vitamin A, could be fed exclusively to adult ruminants with no adverse affect, as animals were able to maintain body weight (372${\pm}$20.1 kg).

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

In vitro rumen fermentation kinetics, metabolite production, methane and substrate degradability of polyphenol rich plant leaves and their component complete feed blocks

  • Aderao, Ganesh N.;Sahoo, A.;Bhatt, R.S.;Kumawat, P.K.;Soni, Lalit
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.26.1-26.9
    • /
    • 2018
  • Background: This experiment aimed at assessing polyphenol-rich plant biomass to use in complete feed making for the feeding of ruminants. Methods: An in vitro ruminal evaluation of complete blocks (CFB) with (Acacia nilotica, Ziziphus nummularia leaves) and without (Vigna sinensis hay) polyphenol rich plant leaves was conducted by applying Menke's in vitro gas production (IVGP) technique. A total of six substrates, viz. three forages and three CFBs were subjected to in vitro ruminal fermentation in glass syringes to assess gas and methane production, substrate degradability, and rumen fermentation metabolites. Results: Total polyphenol content (g/Kg) was 163 in A. nilotica compared to 52.5 in Z. nummularia with a contrasting difference in tannin fractions, higher hydrolysable tannins (HT) in the former (140.1 vs 2.8) and higher condensed (CT) tannins in the later (28.3 vs 7.9). The potential gas production was lower with a higher lag phase (L) in CT containing Z. nummularia and the component feed block. A. nilotica alone and as a constituent of CFB produced higher total gas but with lower methane while the partitioning factor (PF) was higher in Z. nummularia and its CFB. Substrate digestibility (both DM and OM) was lower (P < 0.001) in Z. nummularia compared to other forages and CFBs. The fermentation metabolites showed a different pattern for forages and their CFBs. The forages showed higher TCA precipitable N and lower acetate: propionate ratio in Z. nummularia while the related trend was found in CFB with V. sinensis. Total volatile fatty acid concentration was higher (P < 0.001) in A. nilotica leaves than V. sinensis hay and Z. nummularia leaves. It has implication on widening the forage resources and providing opportunity to use forage biomass rich in polyphenolic constituents in judicious proportion for reducing methane and enhancing green livestock production. Conclusion: Above all, higher substrate degradability, propionate production, lower methanogenesis in CFB with A. nilotica leaves may be considered useful. Nevertheless, CFB with Z. nummularia also proved its usefulness with higher TCA precipitable N and PF. It has implication on widening the forage resources and providing opportunity to use polyphenol-rich forage biomass for reducing methane and enhancing green livestock production.

Herbicidal Activity of Essential Oil from Palmarosa (Cymbopogon martini) (팔마로사 정유의 살초활성)

  • Hong, Su-Young;Choi, Jung-Sup;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • The objective of this study was to find herbicidal compounds in the essential oil of palmarosa (Cymbopogon martini). Of essential oils from basil (Ocimum basilicum), blackpepper (Piper nigrum), clary sage (Salvia sclarea), ginger (Zingiber pfficinale), hyssop (Hyssopus officinalis), nutmag (Myristica fragrance), palmarosa (Cymbopogon martini), fennel (Foeniculum vulgare), sage (Salvia leucantha), and spearmint (Mentha spicta), the herbicidal activity of palmarosa essential oil, which was determined by a seed bioassay using rapeseed (Brassica napus L.), was highest ($GR_{50}$ value, $201{\mu}g\;mL^{-1}$). In palmarosa essential oil, 11 volatile organic chemicals were identified by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus and the major constituents were geraniol (40.23%), geraniol acetate (15.57%), cis-ocimene (10.79%), and beta-caryophyllene (8.72%). The $GR_{50}$ values of geraniol, citral, nerol, and geranyl acetate were 151, 224, 452, and $1,214{\mu}g\;mL^{-1}$, respectively. In greenhouse and field experiments, foliar application of palmarosa essential oil at the level of $80kg\;ha^{-1}$ controlled weeds effectively. Overall results of this study showed that the herbicidal activity of palmarosa essential oil could be due to geraniol and citral which had lower $GR_{50}$ values.