• Title/Summary/Keyword: Volatile Organic Compounds (VOC)

Search Result 385, Processing Time 0.028 seconds

Microenvironmental Exposures To Volatile Organic Compounds (미규모 환경에서의 휘발성 유기화합물 노출)

  • 조완근;강귀화
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.447-459
    • /
    • 1995
  • Volatile organic compounds(VOCs) are of concern for their potential chronic toxicity, their suspected role in the formation of smog, and their suspected role in destruction of stratospheric ozone. Present study evaluated the exposures to selected VOCs in three microenvironments: 2 chlorinated and 5 aromatic VOCs in the indoor and outdoor air, and 5 aromatic VOCs in the breathing zone air of gas-service station attendants. With permissible Quality Assurance and Quality Control performances VOC concentrations were measured 1) to be higher in indoor air than in outdoor air, 2) to be higher in two Taegu residential areas than in a residential area of Hayang, and 3) to be higher in the nighttime than in the daytime. Among five aromatics, Benzene and Toluene were two most highly measured VOCs in breathing zone air of service station attendants. Based on the sum of VOC concentrations, the VOC exposure during refueling was estimated to be about 10% of indoor and outdoor exposures. For Benzene only, the exposure during refueling was estimated to cause about 52% of indoor and outdoor exposure. The time used to calculate the exposures was 2 minutes for refueling and 24 hours for indoor and outdoor exposures.

  • PDF

Destruction of Volatile Organic Compounds Using Photocatalyst-Coated Construction Materials (건축자재의 산화티타늄 코팅을 통한 휘발성 유기화합물 분해)

  • Jo Wan-Kuen;Chun Hee-Dong
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.785-792
    • /
    • 2005
  • In order to reduce roadside and indoor air pollution for volatile organic compounds VOC), it may be necessary to apply photocatalyst-coated construction materials. This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of VOC present in roadside or indoor air. The photocatalytic removal of five target VOC was investigated: benzene, toluene, ethyl benzene and o,m,p-xylenes. Variables tested for the current study included ultraviolet(UV) light intensity coating materials, relative humidity (RH), and input concentrations. Prior to performing the parameter tests, adsorption of VOC onto the current experiment was surveyed, and no adsorption was observed. Stronger UV intensity provided higher photocatalytic destruction(PCD) efficiency of the target compounds. For higher humidity, higher PCD efficiency was observed. The PCD efficiency depended on coating material. Contrary to certain previous findings, lower PCD efficiencies were observed for the experimental condition of higher input concentrations. The current findings suggested that the four parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning VOC of roadside or indoor air.

Comparison of the Concentration of Ambient Volatile Organic Compounds at an Ulsan Industrial Site in 1997 and 1998 (울산 공단 대기에서 측정한 휘발성 유기화합물의 1997년과 1998년 결과 비교)

  • 나광삼;김용표;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.567-574
    • /
    • 1999
  • Volatile organic Compounds(VOC) were measured at an industrial site in Ulsan in 1997 and 1998. Twenty-four hour integrated ambient air samples were collected in 6 L SUMMA canisters during the periods of June 3 to 8, 1997 and June 12 to 17, 1998. The daily mean concentrations of the total $C_2-C_9$ VOC in 1998 were about one third of those in 1997. This decrease of VOC levels may be attributable to the measures to control the emissions of VOC and the decrease of the plant operation. The decrease in the concentrations of oxygenated hydrocarbons and alkenes, especially, contributed to the decrease of the total VOC concentrations in 1998. Lowever concentrations of alkenes compared to aromatics in 1998 were due to the decrease of ethylene and propylene. In the present study, methanol (12.0 ppb) was the most abundant species, followed by acetone (10.1 ppb), propane (6.0 ppb), and vinyl chloride (5.9 ppb). The total concentrations of hazardous air pollutants (HAPs) in 1998 were reduced compared to those in 1997. However, this decrease is due to the drastic decrease of the concentration of methanol. Except methanol, the concentrations of HAPs have not varied much. It is suspected that the VOC control strategy for the Ulsan industrial area has been successful for reducing the total VOC levels but might not be effective in reducing the concentrations of HAPs.

  • PDF

Characteristics of a Plasma-Dump Combustor for VOC Destruction (VOC 분해 플라즈마-덤프 연소기 특성)

  • Kim, Eun Hyuk;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.492-497
    • /
    • 2015
  • VOCs (Volatile Organic Compounds) are generally generated in the painting process, or at the company and laundry where use organic solvents. The VOCs consist of various hydrocarbons and has low calorific value due to its dilution with atmospheric air. Therefore, the VOCs are difficult to burn by a conventional fuel combustor. In this study, a novel plasma dump combustor was proposed for the treatment of low calorific VOC gases. This combustor was designed a combination of the characteristics in a plasma burner, a dump combustor and a 3D matrix burner. The combustor has good structure for maintaining enough residence time and reaction temperature for stable flame formation and VOC destruction. For investigating the performance characteristics of the plasma dump combustor, an experiment was achieved for VOC feed rate, VOC injector position, etc. Toluene was used as a surrogate of VOC. The novel combustor gave better performance than a conventional combustor, showing that VOC destruction rate and energy efficiency were 89.64% and 12.27 kg/kWh respectively, at feeding rate of 450 L/min of VOC of 3,000 ppm of toluene concentration.

A Trend of VOC(Volatile Organic Compound) Control and Patent Analysis on the VOC Control Technical (국내의 VOC 제거 및 회수에 대한 연구동향 및 특허분석)

  • Kim, Pilh-Hwan;Hua, Jin-Mei;Lee, Byung-Ho;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.132-135
    • /
    • 2007
  • VOCs(Volatile Organic Compounds) have been recently enacted by several regulations to the environment since the end of 1990's. So, it need to control emissions of VOCs from industrial cite. VOC controls include all technologies which either collect the VOCs for recovery and reuse or destroy the VOCs. In this study, the VOC control technical trend was searched. Additionally, it was compared to the number of patent along to the year in Korea.

  • PDF

Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hyun-Hee;Yi, Gwang-Yong;Chung, Kwang-Jae;Park, Hae-Dong;Kim, Kab-Bae;Lee, In-Seop
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Objectives: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

The Development of Exposure Assessment Tools for Risk Assessment of Volatile Organic Compounds (VOCs의 위해성 평가를 위한 노출분석 방법 연구)

  • Jo, Seong-Joon;Shin, Dong-Chun;Chung, Yong;Lee, Duck-Hee;Breysse, Patrick N.
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • Volatile organic compounds (VOCs) are an important public health issue in Korea and many important questions remain to be addressed with respect to assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in their analytic determination Valid Personal exposure assessment methods are needed to evaluate exposure frequency, duration and intensity, as well as their relationship to personal exposure characteristics. Biological monitoring is also important since it may contribute significantly in risk assessment by allowing the estimation of effective absorbed doses. This study was on ducted to establish the environmental measurement, personal dosimetry and biological monitoring methods for VOCs. These methods are needed to compare blood, urinary and exhalation breath VOC levels and to provide tools for risk assessment of VOC exposure. Passive monitors (badge type) and a active samplers (trap) for the VOCs collection were used for air sampling. Methods development included determining the minimum detectable amounts of VOCs in each media, as well as evaluating collection methods and developing analytical procedures. Method reliability was assessed by determining breakthrough volumes and comparing results between laboratories and with other methods. A total capacity of trap used in this study was 60ι. Although variable by compound, the average breakthrough was 20%. Also, there was no loss of compounds in trap even if keep for 45 day in -7$0^{\circ}C$. The recovery of active and passive methods was 69% ~ 126% and method detection limit was 0.24 $\mu\textrm{g}$/trap and 0.07 $\mu\textrm{g}$/badge. There was no statistical difference (P > 0.05) between active and passive methods.

Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in an Urban Area (도시 교통밀집지역에서의 대기 중 휘발성유기화합물 농도)

  • 백성옥;박지혜;김미현;박상곤
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.309-310
    • /
    • 2001
  • 휘발성 유기화합물(Volatile Organic Compounds; 이하 VOCs라 함)은 도시대기 중 광화학 스모그의 기인자인 동시에 발암성 혹은 돌연변이원성인 인체에 유해한 물질들이 많으므로 최근 들어 관심의 대상이 되고 있다. 이러한 VOCs의 발생원은 복잡ㆍ다양하지만 인위적인 주요 배출원은 유기용제와 자동차이다. 본 연구에서는 자동차 배출가스의 영향을 많이 밭고 있는 도시교통밀집지역의 VOCs의 출현양상 및 분포특성을 파악하고 도시교통밀집지역과 교통량의 영향을 비교적 적게 받는 교외 지역에서의 VOCs 분포특성을 비교해 보고자 한다. (중략)

  • PDF

The Characteristic of the Concentration Transition of Chemical Substances in Energy Saving House and Apartment House (에너지절약 주택과 일반 아파트에서의 실내 화학오염물질 농도 변화 특성)

  • Yoo, Bok-Hee;Park, Sun-Hyo
    • Journal of the Korean housing association
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • Recently, much attention has been paid to the problem such as sick building syndrome, which caused by the indoor air pollutant. Volatile Organic Compounds $(VOC_s)$ and formaldehyde have been considered as one of the main reason that causes indoor air pollutant. This study is for introducing and designing thermal performance of super energy saving building by conducting $VOC_s$ and formaldehyde concentration in the 3Liter house. The results of the measurement for 10 months showed that $VOC_s$ and formaldehyde decreased until the guideline concentration. It took about 7 months, and it appeared right after new construction. However, their levels were showed higher concentration in comparison with the ordinary residential houses (apartment house). The main difference of between newly built 3Liter house and ordinary apartment is their air changes, which are 0.67/h for 3Liter house and 4.0/h for the apartment.