• Title/Summary/Keyword: Volatile Organic Compound

Search Result 268, Processing Time 0.025 seconds

A comparative analysis of volatile organic compound levels in field samples between different gas chromatographic approaches (분석기법의 차이에 따른 현장시료의 VOC 분석결과 비교연구: 분석오차의 발생 양상과 원인)

  • Ahn, Ji-Won;Pandey, Sudhir Kumar;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.465-476
    • /
    • 2010
  • In this study, a number of volatile organic compounds (VOCs) including benzene, toluene, p-xylene, styrene, and methyl ethyl ketone were analyzed from samples collected in ambient air and under the field conditions. These samples were analyzed independently by two different set-ups for VOC analyses, i.e., between [1] gas chromatography/flame ionization detector with tube sampling - (F-T system) and [2] gas chromatography/mass spectrometer with bag sampling (M-B system). The analytical results derived by both systems showed fairly similar patterns in relative sense but with moderately large differences in absolute sense. The results of M-B system were high relative to F-T system with the F-T/M-B ratio below 1. If the relative biases of the two measurement techniques are derived in terms of percent difference (PD) in concentration values, the results were generally above 35% on average. A student t-test was applied to investigate the statistical significance of those differences between the systems. The results of both analytical systems were different at 95% confidence level for toluene, p-xylene, styrene, and methyl ethyl ketone (P < 0.043). However, F-T and M-B systems showed strong correlations for toluene and p-xylene. The observed bias is explained in large part by such factors as the differences in standard phases used for each system and the chemical loss inside the bag sampler.

Effect of Solvent Extraction on the Low Molecular Weight and Volatile Organic Compounds of Polycarbonate (폴리카보네이트의 저분자량 화합물 및 휘발성 유기물에 대한 접촉추출 영향)

  • Choi, Su-Jung;Yoon, Kyung-Hwa;Hwang, In-Hye;Lee, Chang-Young;Kim, Hee-Seung;Yoo, Seung-Yoon;Kim, Youn-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.532-536
    • /
    • 2010
  • A study on the volatile organic compounds (VOCs) and low molecular weight (LMW) amount which is contained within bisphenol A polycarbonate (PC) was performed by the solvent extraction with ketone type solvents (acetone, butanone, pentanone). The LMW amount of untreated PC was 2.6 wt%, but the values of treated samples with acetone and pentanone were 0.96 and 1.53 wt%, respectively. Acetone is a more effective solvent than pentanone on the LMW extraction. Methylene chloride (MC) and toluene were certified and quantified by GC-Mass experiments, and the quantitative results indicated the fact that the pentanone was the effective solvent on VOC extraction. Focused on the change of VOCs and LMW amount, the use of co-solvent might be more useful, and the experimental results of co-solvent extraction showed that the optimum condition was 50 : 50 volume percent.

Optimum dimensionally stable anode with volatilization and electrochemical advanced oxidation for volatile organic compounds treatment (전극의 부반응 기포발생에 따른 휘발특성과 전기화학고도산화능을 동시에 고려한 휘발성 유기화합물 처리용 최적 불용성전극 개발)

  • Cho, Wan-Cheol;Poo, Kyung-Min;Lee, Ji-Eun;Kim, Tae-Nam;Chae, Kyu-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, $IrO_2/Ti$, $IrO_2/Ti$, and $IrO_2-Ru-Pd/Ti$. EAOP was operated under same current density ($25mA/cm^2$) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the $IrO_2-Ru/Ti$ anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by $IrO_2-Ru/Ti$, 90.2% by $IrO_2-Ru-Pd/Ti$, 78% by $IrO_2/Ti$, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the $IrO_2-Ru/Ti$ anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.

Comparison of sample storage containers for the analysis of volatile organic compounds (VOC) (휘발성유기물(VOC) 분석을 위한 시료보관 용기의 비교)

  • Kim, Seokyung;Kim, Dalho
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.116-123
    • /
    • 2022
  • Polymer bags, metallic canisters, and glass bottles have been used as containers for analyzing the volatile organic compounds (VOCs) in air. In this study, various sampling containers were compared to investigate the short-term stability of VOCs, that is, from the time they are sampled to the time they are analyzed. Polyvinyl fluoride (PVF), polypropylene (PP), polyester aluminum (PE-Al) bags, canisters, and glass bottles were used as sample containers. A 100 nmol/mol standard gas mixture of benzene, toluene, ethylbenzene, m-xylene, styrene, and o-xylene was used for the VOC comparison. Changes in the concentrations of samples stored for 10~20 day in each container were measured using a thermal desorption-gas chromatograph-flame ionization detector (TD-GC-FID). As a result, VOCs stored in a canister and two kinds of amber glass bottles have shown immaterial decreases in concentration in one week, and more than 80 % of the initial concentration was maintained for two weeks. In the case of polymer bags, the concentration of all VOCs, except benzene and toluene, were remarkably decreased below 70% of the initial concentration in one day. Particularly, ethylbenzene, xylene, and styrene have shown dramatic decreases in concentration below 30 % of the initial concentration in all polymer bags in one day.

Changes in the Contents of Sugar, Organic Acid, Free Amino Acid and Nucleic Acid-Related Compounds during Fermentation of Leaf Mustard-Kimchi (갓김치 숙성중 당, 유기산, 유리아미노산 및 핵산관련 물질 함량의 변화)

  • 박석규;조영숙;박정로;문주석;이용수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 1995
  • Changes in the contents of sugar, organic acid, free amino acid and uncleic acid-related compounds of leaf mustard-Kimchi during fermentation at 5~7$^{\circ}C$ were investigated. The leaf mustard-Kimchi was formulated with 4kg leaf mustard, 120g garlic, 80g ginger, 540ml salted anchovies, 1kg green onion, 200g red pepper powder, 200g ground red pepper, 60g whole sesame and 600ml glutinous rice paste. Changes in pH and acidity were relatively slow. Major free sugars were glucose(0.13%) and maltose(0.42%), and residual sugars(0.03-0.04%) were also detected after 32 days of fermentation. Major free amino acids containing more than 26.5mg% were proline, glutamic acid, alanine and histidine. Contents of total free amino acids increased from 244.8 to 397.2mg% by 24 days of fermentation. Of non-volatile organic acid, lactic acid was the most abundant(119.3mg%), and its content increased markedly after 10 days of fermentation. Other organic acids(below 53.1mg%) observed were malic, oxalic and citric acid. Contents of nucleic acid-related compounds were high in the order of hypoxanthine(22.8mg%), IMP(8.3mg%) and GMP(6.9mg%). Hypoxanthine content increased by 10 days(27.3mg%) and decreased thereafter, while the others decreased gradually during the overall period of fermentation.

  • PDF

Elimination capacities of toluene and ammonia in the bio-filter system depending on type of media (담체 종류에 따른 바이오필터의 톨루엔과 암모니아 분해능 평가)

  • Kim, Sunjin;Kim, TaeHyeong;Hwang, SunJin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.797-805
    • /
    • 2012
  • Contribution of immobilized media with bacteria to the odor removal was evaluated in a lab scale bio-filter compared to that with sponge or ceramic media without the immobilized bacteria. Candida tropicalis for volatile organic compounds and ammonium oxidizing bacteria (AOB) for inorganic compounds were used as seeds in lab-scale bio-reactors. Three different type of media in the bio-reactors that immobilized bioreactor (IBR), sponge bioreactor (SBR), and ceramic bioreactor (CBR) were examined, respectively. An empty bed contact time (EBCT) of the bio-filters was fixed as 60 seconds, and the inlet concentration of toluene was changed from 20 ppm to 200 ppm to observe the removal efficiency depending on the concentrations. As a result, the maximum elimination capacities of IBR, SBR, and CBR were 166 $g/m^3/hr$, 138 $g/m^3/hr$, and 138 $g/m^3/hr$, respectively. In addition, toluene as an organic compound and ammonia as an inorganic compound were applied together with different inlet concentrations varied from 80 ppm to 250 ppm of toluene and from 2.5 ppm to 40 ppm of ammonia. The toluene maximum elimination capacities in IBR, SBR, and CBR were 97.4 $g/m^3/hr$, 59.5 $g/m^3/hr$, and 81.9 $g/m^3/hr$, respectively. The ammonia maximum elimination capacities were reached as 7.2 $g/m^3/hr$ in IBR, 6.6 $g/m^3/hr$ in SBR, and 7.0 $g/m^3/hr$ in CBR.

Quality Characteristics and Volatile Flavor Compounds of Oriental Melon Wine Using Freeze Concentration (동결농축 참외와인의 품질 특성과 휘발성 향기 성분)

  • Hwang, Hee-Young;Hwang, In-Wook;Chung, Shin-Kyo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1347-1355
    • /
    • 2015
  • In this study, the physicochemical properties, antioxidant capacities, and volatile flavor compounds of oriental melon wine prepared by freeze concentration after heat treatment (HA), ascorbic acid treatment (AAT), and heat and ascorbic acid treatment (HAAT) were investigated. During fermentation period, the melon wine by HAAT showed greater reduction of soluble solids and reducing sugar contents compared to other treatments. In addition, the melon wine treated with HAAT also showed a higher L value and lower browning index compared to other treatments. After aging, free sugar including fructose, and organic acids including citric acid, succinic acid, and malic acid were detected in all samples. For antioxidant activities and contents, HAAT treated wine showed greater antioxidant activities and total phenolic contents than those of others. In GC/MS analysis, a total of 33 volatile flavor compounds were identified. In the principal component analysis of volatile flavor compounds, principal components 1 and 2 represented 88.15% of the whole date distribution and showed opposite tendencies. Taken together, HAAT enhanced the antioxidant activities and sensory properties of oriental melon wine. Moreover, freeze concentration gave the different volatile flavor characteristics in oriental melon wine.

Utilization of Fermentable Carbohydrates in Feed Manufacturing and in Enzyme of Poultry Feed (사료 제조에서 발효 가능한 탄수화물 이용과 가금 사료에서 효소의 처리에 관한 연구)

  • Nahm, K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.3
    • /
    • pp.239-248
    • /
    • 2006
  • Improvements in understanding the effects of dietary fermentable carbohydrates and their interaction with supplemental feed enzymes and the feed manufacturing process may lead to reductions in volatile organic compound (VOC) emissions from poultry manure. Starch digestibility has been improved by replacing ground wheat or barley with whole wheat or barley, but there was no consistent effect of cereal species or feed form on the pH value of the gizzard contents. Pelleting results in improvements in feed conversion from 0 to 12%. Starch digestibility has been reported to account for up to 35 % of the improvement in available metabolic energy as a result of xylase supplementation. Factors which affect starch utilization and non-starch polysaccharide (NSP) absorption include the presence of anti-nutrient facto. (ANF) in grains, the nature of grain starch, NSP and the digestive capacity of animals. Improvements in feed production technology have been made in enzyme stabilization, allowing some dry enzyme products to be pelleted after conditioning at up to $87.69^{\circ}C$ and liquid enzymes to be stored in the feed mill for up to low months prior to use. The soluble NSP, arabinokylans and beta-glucans are partially degraded into smaller fragments by enzymes. With fragmentation, the water holding capacity is decreased, which leads to a reduction in digesta moisture, wet feces, and dirty eggs from hens fed diets containing viscosity-inducing ingredients.

Characteristics of Metal-Phthalocyanine for Catalytic Combustion of Methanol (메탄올의 촉매연소에 대한 금속-프탈로시아닌의 특성)

  • Seo, Seong-Gyu;Yoon, Hyung-Sun;Lee, Sun-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1809-1816
    • /
    • 2000
  • The catalytic combustion of methanol as a model volatile organic compound(VOC) was been investigated over metal-phthalocyanine(PC) in a fixed bed flow reactor system. The catalytic activity of Co-PC pretreated with air and methanol mixture at $450^{\circ}C$ and 60 cc/min for 1 hr was very excellent. The order of catalytic activity on methanol combustion was summarized as follows: metal free-PC < Zn-PC < Fe-PC < Cu($\alpha$)-PC < Co-PC. By TG/DTA analysis, the tendency of thermal decomposition was increased as follows: metal free-PC < Zn-PC < Cu($\alpha$)-PC < Co-PC < Fe-PC. Under this pretreatment condition, the basic structures of Co-PC, Cu($\alpha$)-PC and Fe-PC were destroyed, and the new metal oxide such as $Co_3O_4$ from Co-PC was confirmed by EA and XRD analysis. But Zn-PC and metal free-PC were retained its basic structure under this pretreatment condition. On the combustion of methanol over Co-PC, HCHO and $HCOOCH_3$ were observed as an intermediate products in the high concentration of reactant or the short contact time(W/F).

  • PDF

Fabrication of Environmental-friendly Materials Using Atomic Layer Deposition (원자층 증착을 이용한 친환경 소재의 제조)

  • Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this article, I will introduce recent developments of environmental-friendly materials fabricated using atomic layer deposition (ALD). Advantages of ALD include fine control of the thin film thickness and formation of a homogeneous thin fim on complex-structured three-dimensional substrates. Such advantages of ALD can be exploited for fabricating environmental-friendly materials. Porous membranes such as anodic aluminum oxide (AAO) can be used as a substrate for $TiO_2$ coating with a thickness of about 10 nm, and the $TiO_2$-coated AAO can be used as filter of volatile organic compound such as toluene. The unique structural property of AAO in combination with a high adsorption capacity of amorphous $TiO_2$ can be exploited in this case. $TiO_2$ can be also deposited on nanodiamonds and Ni powder, which can be used as photocatalyst for degradation of toluene, and $CO_2$ reforming of methane catalyst, respectively. One can produce structures, in which the substrates are only partially covered by $TiO_2$ domains, and these structures turns out to be catalytically more active than bare substrates, or complete core-shell structures. We show that the ALD can be widely used not only in the semiconductor industry, but also environmental science.