• 제목/요약/키워드: Void growth

검색결과 119건 처리시간 0.023초

통계적 방법을 이용한 복합조직강의 변형률과 보이드 성장거동에 관한 연구 (A Study on Strain-Void Growth Mechanism of Dual Phase Steel by Statistical Method)

  • 오경훈;유용석;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.533-538
    • /
    • 2000
  • Ductile fracture of dual phase steel begins with void nucleation, at martensite-ferrite interface of deformed martensite particle. In this study, void nucleation, growth, and coalescence under various strain were studied in dual phase steel. Therefore, by means of the heat treatment of low carbon steel, the study deals with void nucleation and growth for ferrite grain size and martensite volume fraction of dual phase steel using statistical method. Void nucleation and growth with increasing strain are shown depend upon the ferrite grain size. Voids volume fraction generally increase as ferrite grain size decease.

  • PDF

Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H.
    • 한국결정성장학회지
    • /
    • 제14권2호
    • /
    • pp.58-62
    • /
    • 2004
  • The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

수소 취성 속도에 관한 이론적 모델링 (Theoretical Modeling of the Kinetics of External Hydrogen Embrittlement)

  • 한정섭
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.324-333
    • /
    • 2005
  • The kinetics of external hydrogen embrittlememt is considered. The equation of the crack growth rate (CGR) is derived from modification of the model developed by Wilkinson and Vitek. After calculation of hydrogen pressure build-up in the void, the effect of the internal hydrogen pressure on the void growth is added. The CGR is expressed by two terms. One is the term dependent on the critical stress, which is exactly same as Wilkinson and Vitek. The other is term dependent on the pressure of the hydrogen in void.

솔더 접합부에 생성된 Void의 JEDEC 규격과 기계적 특성에 미치는 영향 (Analysis of Void Effects on Mechanical Property of BGA Solder Joint)

  • 이종근;김광석;윤정원;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.1-9
    • /
    • 2011
  • Understanding the void characterization in the solder joints has become more important because of the application of lead free solder materials and its reliability in electronic packaging technology. According to the JEDEC 217 standard, it describes void types formed in the solder joints, and divides into some categories depending on the void position and formation cause. Based on the previous papers and the standards related to the void, reliability of the BGA solder joints is determined by the size of void, as well as the location of void inside the BGA solder ball. Prior to reflow soldering process, OSP(organic surface preservative) finished Cu electrode was exposed under $85^{\circ}C$/60%RH(relative humidity) for 168 h. Voids induced by the exposure of $85^{\circ}C$/60%RH became larger and bigger with increasing aging times. The void position has more influence on mechanical strength property than the amount of void growth does.

유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법 (Practical Method for FLD of Mg Alloy Sheet using FEM)

  • 김경태;이형욱;김세호;송정한;이근안;최석우;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

기공을 포함한 이방성 판재의 성형한계 예측 (A Theoretical Investigation of Forming Limits of Voided Anisotropic Sheet Metals)

  • 유봉선;임창동;김영석;원성연
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1139-1145
    • /
    • 2005
  • Most failures of ductile materials in metal forming processes occurred due to material damage evolution - void nucleation, growth and coalescence. In this paper, the modified yield function of Liao et al in conjunction with the Hosford's yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also the characteristic length defining the neck geometry is introduced in M-K model to incorporate the effect of triaxial stress in necked region on forming limits. The forming limits theoretically predicted are compared with experimental data. Satisfactory agreement was obtained between the predictions and experimental data.

열경화성 수지의 기공 생성 원인 (Void Formation Mechanism of Thermoset)

  • 강길호;박상윤
    • 폴리머
    • /
    • 제28권1호
    • /
    • pp.35-40
    • /
    • 2004
  • 복합재료의 물성에 가장 큰 영향을 미치는 기공 결함의 원인에는 각 공정에 따라 다양하게 나타난다. 본 실험을 통해서 폴리에스터 수지 및 에폭시 수지가 경화될 때 결함으로 작용하여 복합재료의 물성을 저하시키는 기공의 생성원인을 분석하였다. 압력에 의한 영향을 알아보기 위하여 진공 챔버를 제작하였고, 작업 및 환경 상 수지가 노출될 수 있는 분위기에 따른 수지의 열분석을 통하여 경화 시 휘발특성을 분석하였다. 휘발가스 성분분석을 위한 GC/MS 분석 결과 폴리에스터 수지 경화 시 반응성 희석제의 스티렌이 80% 이상 차지하였으며 그밖에 소량의 톨루엔이 검출되었다. 에폭시 수지 경화 시에도 저점도 반응성 희석제인 부틸 글리시딜 에테르가 휘발성분의 90% 이상을 차지하였다. 실험 결과 혼합공정에 의하여 수지 자체적으로 기공 생성 자리를 가지고 있으며 수지에 진공을 가하거나 가열하여 이를 효과적으로 제거할 수 있었다. 여러 공정 중 수지에 함유될 수 있는 수분의 경우 초기 휘발특성이 아세톤보다 컸으며 이밖에 반응성 희석제, 첨가제, 반응가스 등이 수지 경화 시 쉽게 휘발되어 기공 성장의 원인이 됨을 알 수 있었다.

XLPE의 부분방전에 의한 트리진전 특성과 음향방출신호 측정 (Measurement of Tree Growth Characteristics and Acoustics Emission Signals by Partial Discharge in XLPE)

  • 김성규;이상우;이광식;김영훈;김금영;김인식;김이국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1954-1956
    • /
    • 2000
  • In this paper, when void of XLPE was existed, electrical tree was growth in branch-type, and it was growth in bush-type when void of XLPE was not existed. Moreover, charge magnitude of partial discharge by deterioration time of XLPE sample was about proportion to output voltage of AE signals. When void was existed, charge magnitude of partial discharge, the output voltage Vp-p value of AE signals were increased with increasing deterioration time. However, when void were not existed, charge magnitude of partial discharge, the output voltage Vp-p value of AE signals were increased in fast deterioration time, but it were decreasing at after in middle deterioration time. Frequency spectrum response of AE signal was about 100-250[kHz].

  • PDF