• Title/Summary/Keyword: Void Time

Search Result 344, Processing Time 0.022 seconds

A Study on Polyester Fabric treated with Quarternary Ammonium Salt and Alkali (사급암모늄염/수산화나트륨용액에서 폴리에스테르 직물의 알칼리처리에 관한 연구)

  • 류효선
    • Journal of the Korean Home Economics Association
    • /
    • v.25 no.4
    • /
    • pp.9-18
    • /
    • 1987
  • This study is conducted to investigate the influence of addition of quarternary ammonium salt(cetyl trimethyl ammonium bromide: CTAB) when polyester(PET) fabric is treated with sodium hydroxide(NaOH), depending on experimental variables such as CTAB concentration, NaOH concentration, time & temperature, and the change in physical & chemical properties of alkaline-hydrolyzed PET fabrics depending on their weight loss. The results are as follows: 1. By adding CTAB in aqueous NaOH, the weight loss of PET fabric is increased remarkably and until the concentration of CTAB is reached at its cmc, and the higher the concentration of CTAB are, the more weight loss on PET fibrics are. 2. The addition of CTAB in aqueous NaOH is most effective at lower NaON concentration(2%) among various NaOH concentration, on increasing the amount of weight loss, while there are almost similar results through various treatment time and temperature. 3. As the amount of weight of weight loss on PET fabric is increased, the increase of void space in the PET yarn, of softness & dyeability of PET fabric and the decrease of tensile strength are found. On the other hand, the moisture regain shows a little increase by alkaline-hydrolysis on PET fabric while vertical absorption test & water retention value are not sufficiently sensitive to distinguish between the hydrophillicity of untreated and treated PET fabric. The shrinkage of PET fabric is induced by swelling in hot aqueous NaOH regardless of NaOH concentration & addition of CTAB.

  • PDF

A Study On the Diagnosis Breakdown Using Fractal Characteristics and the Method of Acoustic Emission in Low Density Polyethylene (프랙탈 특성과 음향방출 계측법을 이용한 LDPE 시료에서의 트리잉 파괴진단에 관한 연구)

  • Yoon, H.J.;Park, J.J.;Shin, S.J.;Choi, J.K.;Kim, S.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1758-1760
    • /
    • 1997
  • Automatic detection system to detect acoustic emission pulse and fractal dimension were developed, to observe tree deterioration phenomena in LDPE. The purpose of our work are to use acoustic emission system and fractal dimension and to investigate the treeing phenomena in polymeric insulation under applied AC voltage 11[kV] with an artificial needle-shaped void(1.5[mm]) using the above system. We analyzed and phase angle-acoustic emission pulse amplitude-deterioration time ($\Phi$-AEA-t) pattern and phase angle-acoustic emission pulse number-deterioration time($\Phi$-AEN-t) pattern using statistical operators such as skewness, fractal dimension. In this paper show that the correlation of $\Phi$-AEA-t, $\Phi$-AEN-t, fractal dimension using regression analysis by the method of least squares can be used to predict the breakdown just before the breakdown occurs.

  • PDF

Defect Genesis and Fatigue Failure Behaviour of Bearing Metal in Manufacturing Processes (제조 공정에 따른 베어링메탈의 결함발생 및 피로파괴거동)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.45-51
    • /
    • 2011
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step (sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased at the second step (rolling process of sintered plate ; Series B). After the third step (re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process affects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at interface between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF

PD Occurrence Characteristics according to Voltage and Time in Solid Insulator

  • Park, Sung-Hee;Shin, Dal-Woo;Lim, Kee-Joe;Park, Young-Guk;Kang, Sung-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.10-14
    • /
    • 2003
  • The occurrence of partial discharge (PD) in solid dielectrics is very harmful because it leads to the deterioration of insulation by electrical, chemical, and thermal reactions as a combined action of the discharged ions bombarding the surface and by the action of chemical compounds that are formed by the discharge. Consequently, if any defects are present in the solid insulation system, performance decreases until the system breaks down. Therefore, removing or suppressing the defect is very important. Voids are a typical defect in the solid insulation system and are very harmful because they deteriorate insulation. As a basic step, studying the properties of PD in voids is important because an accurate knowledge of these properties is required to estimate the deterioration of voids. In this paper, the correlation between the size of voids and internal PD is discussed as a function of the time of the applied voltage and its magnitude. Magnitude, repetition rate, average discharge power, and average discharge current of PD in specimens with large voids were found to be larger than the others in this experiment. The smaller specimens had voids when the magnitude and number of PDs were reduced.

Characteristics of Magnesium Alloy Fabricated by Melt Drag Method with Applying Overheating Treatments (과부하 열처리를 적용하여 용융드래그방법으로 제작한 마그네슘합금의 특성)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.414-418
    • /
    • 2022
  • Magnesium alloy is the lightest practical metal. It has excellent specific strength and recyclability as well as abundant reserves, and is expected to be a next-generation structural metal material following aluminum alloy. This paper investigated the possibility of thin plate fabrication by applying a overheating treatment to the melt drag method, and investigating the surface shape of the thin plate, grain size, grain size distribution, and Vickers hardness. When the overheating treatment was applied to magnesium alloy, the grains were refined, so it is expected that further refinement of grains can be realized if the overheating treatment is applied to the melt drag method. By applying overheating treatment, it was possible to fabricate a thin plate of magnesium alloy using the melt drag method, and a microstructure with a minimum grain size of around 12 ㎛ was obtained. As the overheating treatment temperature increased, void defects increased on the roll surface of the thin plate, and holding time had no effect on the surface shape of the thin plate. The fabricated thin plate showed uniform grain size distribution. When the holding times were 0 and 30 min, the grain size was refined, and the effect of the holding time became smaller as the overheating treatment temperature increased. As the overheating temperature becomes higher, the grain size becomes finer, and the finer the grain size is, the higher the Vickers hardness.

Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test (압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.

Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels (STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響)

  • 오세욱;이규용;김중완;문무경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.140-149
    • /
    • 1985
  • Fully reversed push-pull low cycle fatigue tests under strain control of trapezoid cyclic mode have been conducted in air at temperature of 550.deg. C and with frequency of 0.5 cpm on the domestic stainless steel STS 316 after solution treatment for 1 hour at 1100.deg. C. As an experimental equipment for high temperature fatigue tests, an electric servo-hydraulic fatigue machine(Instron model 1350) was used. This paper presents the effects of creep hold time and plastic strain range on push-pull high temperature low cycle fatigue life and fracture behavior. The fracture surfaces were observed by means of the scanning electron microscope. The results are as follows. (1) The fatigue life decreases with increase of the plastic strain range equal hold time and also decreases as the hold time is getting longer. (2) The frequency modified damage function can predict fatigue life by incorporating a variation of Coffin's frequency modified approach into damage function. (3) The ratios of creep damage and fatigue damage can be calculated by using he linear accumulation damage concept and the ratio of creep damage increases as the hold time is getting longer. (4) At the creep hold time of 5 minutes and the strain range of 2.0%, the fracture mode was intergranular fracture and striations were hardly observed. In this case, the intergranular cracking was originated in void type('.gamma.' type) cracking.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Photocatalytic Properties of TiO2 Thin Films Prepared by RF Sputtering (RF Sputtering법으로 제조된 TiO2 박막의 광촉매 특성)

  • Jeong, Min-ho;Jin, Duk-yong;Hayashi, Y.;Choi, Dae-kue
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.185-190
    • /
    • 2003
  • Titanium dioxide films were prepared by RF sputtering method on glass for various oxygen partial pressures at power 270 W. The crystal structure, photocatalytic property and the hydrophilicity of $TiO_2$thin film the deposition conditions were investigated. Crystallized anatase phase was observed in $TiO_2$film deposited at the ratio of oxygen partial pressure 10% and 20% for 2 hrs. As the increase of deposition time, the grain size and void size of $TiO_2$film have increased and also $V_2$films have been good crystallinity. The ultraviolet-visible light absorption of $TiO_2$films was increased with increasing of deposition time and occured chiefly at the wavelength between 280 and 340 nm. The absorption band was shifted to a longer wave length as deposition time increased. Water contact angle on the X$TiO_2$film of anatase structure was decreased with increasing ultraviolet illumination time and became lower than $11^{\circ}$ from $83^{\circ}$. When hydrophilic $TiO_2$film changed by enough ultraviolet illumination was stored in the dark, the film surface gradually turned to hydrophobic state.

A Study on the Relationship to Installation Art in Deconstruction Architecture Design (해체주의 건축 디자인에서 설치미술과의 상관성에 관한 연구)

  • 김명옥
    • Korean Institute of Interior Design Journal
    • /
    • no.12
    • /
    • pp.10-17
    • /
    • 1997
  • The lastest art is being characterised by an ever active exchange between different genre. This is a study on the installation aspect in deconstruction architectured and interior design. The progressive and aggressive nature of installatation art embodies uncatagorized genre, the freedom of material application, introduction of the notion of time in space, the reversion of subject and object, the union of art and every experience, understanding of object through deconstruction, enlargement of concept of space, collage-style composition and layer technique. I can conclude that the installation aspect in Tshumi's Parc de la Villette is its call upon the audience to actively participate, the introduction of a coincidental conjunction, its challenge on the conventional idea of park and its flexibility caused by human activity and time. In Hadid's Hong Kong Peak Club the installation aspect is the application of layer technique using four enormous beams horizontally laid out on a man-made moutain. Furthermore, Libeskind's pursuit of the mental in Berlin Museum Extension through the penetration of an invisible line into a void creates a new interpretation of the role of a museum and thus relates itself to installation art. The installation aspect in Himmelblau's Vienna Roof Renovation is the literal deconstruction of the roof of an old building in the old section of Wien and the expression of time and space through the interrelationship between interior and exterior environment by the use of juxtaposition technique. Finally, I note that the installation aspect in Gehry's Santa Monica Residence is the reorganization of cheap material as a form of 'object', that creates spon-taneity, movement as well as flow of time in space and ex-hibit the double-sidedness of the visible world.

  • PDF