• Title/Summary/Keyword: Voice recognition rate

Search Result 137, Processing Time 0.022 seconds

OnDot: Braille Training System for the Blind (시각장애인을 위한 점자 교육 시스템)

  • Kim, Hak-Jin;Moon, Jun-Hyeok;Song, Min-Uk;Lee, Se-Min;Kong, Ki-sok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.41-50
    • /
    • 2020
  • This paper deals with the Braille Education System which complements the shortcomings of the existing Braille Learning Products. An application dedicated to the blind is configured to perform full functions through touch gestures and voice guidance for user convenience. Braille kit is produced for educational purposes through Arduino and 3D printing. The system supports the following functions. First, the learning of the most basic braille, such as initial consonants, final consonant, vowels, abbreviations, etc. Second, the ability to check learned braille by solving step quizzes. Third, translation of braille. Through the experiment, the recognition rate of touch gestures and the accuracy of braille expression were confirmed, and in case of translation, the translation was done as intended. The system allows blind people to learn braille efficiently.

Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling (특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로)

  • Lee, Hyun-Sang;Qiao, Xin;Shin, Sun-Young;Kim, Gyu-Ri;Oh, Se-Hwan
    • Informatization Policy
    • /
    • v.29 no.4
    • /
    • pp.43-66
    • /
    • 2022
  • With the development of artificial intelligence technology, competition for artificial intelligence technology patents around the world is intensifying. During the period 2000 ~ 2021, artificial intelligence technology patent applications at the US Patent and Trademark Office have been steadily increasing, and the growth rate has been steeper since the 2010s. As a result of analyzing Korea's artificial intelligence technology competitiveness through patent indices, it is evaluated that patent activity, impact, and marketability are superior in areas such as auditory intelligence and visual intelligence. However, compared to other countries, overall Korea's artificial intelligence technology patents are good in terms of activity and marketability, but somewhat inferior in technological impact. While noise canceling and voice recognition have recently decreased as topics for artificial intelligence, growth is expected in areas such as model learning optimization, smart sensors, and autonomous driving. In the case of Korea, efforts are required as there is a slight lack of patent applications in areas such as fraud detection/security and medical vision learning.

Gesture Control Gaming for Motoric Post-Stroke Rehabilitation

  • Andi Bese Firdausiah Mansur
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.37-43
    • /
    • 2023
  • The hospital situation, timing, and patient restrictions have become obstacles to an optimum therapy session. The crowdedness of the hospital might lead to a tight schedule and a shorter period of therapy. This condition might strike a post-stroke patient in a dilemma where they need regular treatment to recover their nervous system. In this work, we propose an in-house and uncomplex serious game system that can be used for physical therapy. The Kinect camera is used to capture the depth image stream of a human skeleton. Afterwards, the user might use their hand gesture to control the game. Voice recognition is deployed to ease them with play. Users must complete the given challenge to obtain a more significant outcome from this therapy system. Subjects will use their upper limb and hands to capture the 3D objects with different speeds and positions. The more substantial challenge, speed, and location will be increased and random. Each delegated entity will raise the scores. Afterwards, the scores will be further evaluated to correlate with therapy progress. Users are delighted with the system and eager to use it as their daily exercise. The experimental studies show a comparison between score and difficulty that represent characteristics of user and game. Users tend to quickly adapt to easy and medium levels, while high level requires better focus and proper synchronization between hand and eye to capture the 3D objects. The statistical analysis with a confidence rate(α:0.05) of the usability test shows that the proposed gaming is accessible, even without specialized training. It is not only for therapy but also for fitness because it can be used for body exercise. The result of the experiment is very satisfying. Most users enjoy and familiarize themselves quickly. The evaluation study demonstrates user satisfaction and perception during testing. Future work of the proposed serious game might involve haptic devices to stimulate their physical sensation.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

A Study on Improving of Access to School Library Collection through High School Students' DLS Search Behavior Analysis (고등학생의 DLS 검색행태 분석을 통한 학교도서관 자료 접근성 향상 방안 고찰)

  • Jung, Youngmi;Kang, Bong-Suk
    • Journal of Korean Library and Information Science Society
    • /
    • v.51 no.2
    • /
    • pp.355-379
    • /
    • 2020
  • Digital Library System(DLS) for the school library is a key access tool for school library materials. The purpose of this study was to find ways to improve the accessibility of materials through analysis of students' information search behavior in DLS. Data were collected through recording of 42 participants' DLS search process, and questionnaire. As a result, the search success rate and search satisfaction were found to be lower when the main purpose of DLS is simple leisure reading, information needs are relatively ambiguous, and when user experiences the complicated situations in the search process. The satisfaction level of search time sufficiency was the highest, and the search result satisfaction was the lowest. Besides, there was a need to improve DLS, such as integrated search of other library collection information, the recommendation of related materials, the print output of collection location, voice recognition through mobile apps, and automatic correction of search errors. Through this, the following can be suggested. First, DLS should complement the function of providing career information by reflecting the demand of education consumers. Second, improvements to DLS functionality to the general information retrieval system level must be made. Third, an infrastructure must be established for close cooperation between school library field personnel and DLS management authorities.

RPCA-GMM for Speaker Identification (화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델)

  • 이윤정;서창우;강상기;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.519-527
    • /
    • 2003
  • Speech is much influenced by the existence of outliers which are introduced by such an unexpected happenings as additive background noise, change of speaker's utterance pattern and voice detection errors. These kinds of outliers may result in severe degradation of speaker recognition performance. In this paper, we proposed the GMM based on robust principal component analysis (RPCA-GMM) using M-estimation to solve the problems of both ouliers and high dimensionality of training feature vectors in speaker identification. Firstly, a new feature vector with reduced dimension is obtained by robust PCA obtained from M-estimation. The robust PCA transforms the original dimensional feature vector onto the reduced dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector. Secondly, the GMM with diagonal covariance matrix is obtained from these transformed feature vectors. We peformed speaker identification experiments to show the effectiveness of the proposed method. We compared the proposed method (RPCA-GMM) with transformed feature vectors to the PCA and the conventional GMM with diagonal matrix. Whenever the portion of outliers increases by every 2%, the proposed method maintains almost same speaker identification rate with 0.03% of little degradation, while the conventional GMM and the PCA shows much degradation of that by 0.65% and 0.55%, respectively This means that our method is more robust to the existence of outlier.

A Study on Effects of the vocal psychotherapy upon Self-Consciousness (성악심리치료활동을 통한 자기의식 변화에 관한 연구)

  • Lee, Hyun Joo
    • Journal of Music and Human Behavior
    • /
    • v.4 no.2
    • /
    • pp.66-83
    • /
    • 2007
  • The purpose of this study is to learn both effects of the vocal psychotherapy on the self-consciousness and the variety of the self-consciousness on the vocal psychotherapy in return. The research for this study was performed to three subjects who were students of E university, Seoul, ten times for sixty minutes. The subjects were all volunteers for the advertisement on a music-therapy program searching for them on the web site of E university. The vocal psychotherapy program consists of four steps and each of them consists of two to four short terms again. Both before and after the experiment, examinations on self-consciousness were done to recognize the change of the subjects' self-consciousness which would be caused by the vocal psychotherapy activity. After every short term, the subjects were asked to write reports to closely analyze the change of self-consciousness according to the terms and the variety of the subjects. The effect of the vocal psychotherapy activity on the changes of scores in the self-consciousness examination is the first thing to point out on this study. There appeared some personal varieties on the total scores of the examination and scores of some sub-categories. Especially, there were different scores on the private self-consciousness, the public self-consciousness, and the social anxiety between before and after performing the vocal psychotherapy program. Subject A, who had got the best score of all on the scope of the private self-consciousness, showed the steepest decrease on the very scope. On the contrary, the subject showed decrease of scores of the public self-consciousness and the social anxiety in the relatively little rate. Subject B, who had got the highest score of the three on the public self-consciousness, showed the steepest decrease on that of all scopes and showed no difference on the social anxiety scope. In the case of the last one, subject C, who had relatively low scores on the private and public self-consciousness than the others, the private self-consciousness score increased but the public self-consciousness and the social anxiety scores decreased. The changes of the scores of each questions were examined in order to see possible other changes that had not been exposed on the changes of the total and sub-categories scores. As a result of that, of all twenty-eight questions, there were changes about one to two points. Subject A showed the difference with thirteen questions, subject B with sixteen and subject C with nineteen questions. The rate of change of subject C was relatively small but more questions changed and the change of score was wider than the others. Considering all those results, It can be possibly said that the vocal psychotherapy affects the changes of the scores of sub-categories in self-consciousness examination. The next thing to point out on this study is the change of recognition that was exposed on the subjects' report after every short term of the program. As a result of the close analyzing, according to the short terms and variety of self-consciousness, recognizing the way express subjects themselves by voice and recognizing their own voices appeared to be different. How much they cared about others and why they did so were also different. According to the self reports, subject A cared much about her inner thought and emotion and tended to concentrate herself as a social object. There appeared some positive emotional experiments such as emotional abundance and art curiosities on her reports but at the same time some negative emotions such as state-trait anxiety and neuroticism also appeared. Subject B, who showed high scores on the private and public self-consciousness like subject A, had a similar tendency that concentrates on herself as a social object but she showed more social anxiety than subject A. Subject C got relatively lower points in self-consciousness examination, tended to care about herself, and had less negative emotions such as state-trait anxiety than other subjects. Also, with terms going on, she showed changes in the way of caring about her own voice and others. This study has some unique significances in helping people who have problems caused by self-estimation activated with self-consciousness, using voices closely related to one's own self, performing the vocal skills discipline to solve the technical problems. Also, this study has a potentiality that the vocal psychotherapy activity can be effectively used as a way affects the mental health and developing personality.

  • PDF