정부 및 관련 기관에서 보이스피싱을 예방하기 위한 다양한 대책을 마련하고 있음에도 불구하고, 보이스피싱 피해가 계속해서 발생하고 있다. 본 연구는 텍스트 마이닝 기법을 활용하여 보이스피싱 사기범과 잠재피해자의 실 제대화 448건을 분석하였다. 분석 결과, 보이스피싱 사기범은 지금, 이제, 진행, 오늘, 먼저 등의 한정된 기간을 강조하는 단어를 자주 사용하는 것으로 나타났다. 이것은 사기범들이 특정 단어를 통해 상대방이 합리적인 판단을 하지 못하도록 피해자의 심리를 조작한다는 것을 말해준다. 본 연구의 결과는 정부 및 유관 기관이 효과적인 보이스피싱 예방 및 소비자 보호 정책을 수립하는 데 도움이 된다.
Background : Cepstral analysis which is obtained from Fourier transformation of spectrum has been known to be effective indicator to analyze the voice disorder. To evaluate the voice disorder, phonation of sustained vowel /a/ sound or continuous speech have been used but the former was limited to capture hoarseness properly. This study is aimed to compare the effectiveness in analysis of cepstrum between the sustained vowel /a/ sound and continuous speech. Methods : From March 2012 to December 2014, total 72 patients was enrolled in this study, including 24 unilateral vocal cord palsy, vocal nodule and vocal polyp patients, respectively. The entire patient evaluated their voice quality by VHI (Voice Handicap Index) before and after treatment. Phonation of sustained vowel /a/ sample and continuous speech using the first sentence of autumn paragraph was subjected by cepstral analysis and compare the pre-treatment group and post-treatment group. Results : The measured values of pre and post treatment in CPP-a (cepstral peak prominence in /a/ vowel sound) was 13.80, 13.91 in vocal cord palsy, 16.62, 17.99 in vocal cord nodule, 14.19, 18.50 in vocal cord polyp respectively. Values of CPP-s (cepstral peak prominence in text-based speech) in pre and post treatment was 11.11, 12.09 in vocal cord palsy, 12.11, 14.09 in vocal cord nodule, 12.63, 14.17 in vocal cord polyp. All 72 patients showed subjective improvement in VHI after treatment. CPP-a showed statistical improvement only in vocal polyp group, but CPP-s showed statistical improvement in all three groups (p<0.05). Conclusion : In analysis of cepstrum, text-based analysis is more representative in voice disorder than vowel sound speech. So when the acoustic analysis of voice by cepstrum, both phonation of sustained vowel /a/ sound and text based speech should be performed to obtain more accurate result.
Text classification is one of the popular tasks in Natural Language Processing (NLP) used to classify text or document applications such as sentiment analysis and email filtering. Nowadays, state-of-the-art (SOTA) Machine Learning (ML) and Deep Learning (DL) algorithms are the core engine used to perform these classification tasks with high accuracy, and they show satisfying results. This paper conducts a benchmarking performance's analysis of multiple SOTA algorithms on the first known labeled Korean voice phishing dataset called KorCCVi. Experimental results reveal performed on a test set of 366 samples reveal which algorithm performs the best considering the training time and metrics such as accuracy and F1 score.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권12호
/
pp.4706-4724
/
2020
With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.
본 연구는 영어 편지 글에 나타난 자신의 표현, 수사 형태, 그리고 작문 활동을 중심으로 한국 대학생의 서면 텍스트의 특성을 살펴보는 것을 목적으로 한다. 자료로는 학생들의 영어 취업지원서를 포함하였으며, 분석을 위해 '목적-의지' 모델을 채택하였다. 연구 결과, 학생들은 재설정된 상황에서 글 쓰는 이로서의 자신을 표현하기 위해 독특한 전략을 사용하였다. 취업 지원을 위한 편지 속 학생들의 표현 방법은 매우 다양하였고, 어느 누구도 날씨를 언급하는 한국식 편지 쓰기 방식을 채택하지 않았다. 수사 형태는 정형화된 형식에서 벗어나 다양성과 통합된 모습을 보여주었다. 작문 활동을 통해 학생들은 글 쓰는 이로서의 고유한 내적 가치를 보여주었으며, 이는 곧 학생들의 작문 결과가 교수자의 강의 내용과 동일한 모습으로 나타나지 않는다는 것을 의미한다. 이러한 결과는 학습은 특정 담화 공동체 내에서의 상황 활동이라는 사회 문화 이론을 뒷받침한다. 그러므로 영작문 교수자는 학생들의 삶과 학습 경험이 텍스트 속 정체성과 작문 활동에 영향을 미친다는 사실을 인지하고 지도해야 한다.
When listening the various speech synthesis systems developed and being used in our country, we find that though the quality of these systems has improved, they lack naturalness. Moreover, since the voice color of these systems are limited to only one recorded speech DB, it is necessary to record another speech DB to create different voice colors. 'Voice Color' is an abstract concept that characterizes voice personality. So speech synthesis systems need a voice color control function to create various voices. The aim of this study is to examine several factors of voice color control rules for the text-to-speech system which makes natural and various voice types for the sounding of synthetic speech. In order to find such rules from natural speech, glottal source parameters and frequency characteristics of the vocal tract for several voice colors have been studied. In this paper voice colors were catalogued as: deep, sonorous, thick, soft, harsh, high tone, shrill, and weak. For the voice source model, the LF-model was used and for the frequency characteristics of vocal tract, the formant frequencies, bandwidths, and amplitudes were used. These acoustic parameters were tested through multiple regression analysis to achieve the general relation between these parameters and voice colors.
This thesis describes the development of a service system for small-sized shops which support not only music broadcasting, but editing and generating voice announcement using the TTS(Text-To-Speech) technology. The system has been developed based on web environments with an easy access whenever and wherever it is needed. The system is able to control the sound using silverlight media player based on the ASP .NET 2.0 technology without any additional application software. Use of the Ajax control allows for multiple users to get the maximum load when needed. TTS is built in the server side so that the service can be provided without user's computer. Due to convenience and usefulness of the system, the business sector can provide better service to many shops. Further additional functions such as statistical analysis will undoubtedly help shop management provide desirable services.
본 연구의 목적은 서로 다른 두 유형의 챗봇(음성기반 챗봇 및 문자기반 챗봇)이 한국 EFL 학습자의 말하기 능력 및 학습자 인식에 미치는 영향을 파악하는데 있다. 실험 참가자는 총 80명으로, 한국에 있는 한 대학교의 신입생들이었으며, 모두 교양 영어 말하기 수업을 듣는 학생들이었다. 참가자들은 무작위 하게 두 실험집단으로 나뉘어 16주 동안 서로 다른 두 유형의 챗봇과 10번의 채팅에 참여하였다. 실험 전후 참가자의 말하기 능력에 변화가 있는지를 알아보기 위하여 사전사후 말하기 시험을 진행하였고, 챗봇을 이용한 영어학습에 대해 인식변화가 있는지를 살펴보기 위해 사전사후 설문조사를 실시하였다. 말하기시험결과, 챗봇을 이용한 한국 EFL 학습자들의 의사소통능력은 유의미하게 향상되었고, 그 중 문자기반 챗봇이 의사소통능력 향상에 더욱 도움이 되는 것으로 나타났다. 설문조사결과, 챗봇기반 영어학습에 대한 학습자들의 인식은 긍정적으로 변화하였고, 그 중 음성기반 챗봇에 대한 인식이 좀 더 호의적으로 바뀐 것으로 조사됐다. 본 연구는 EFL 상황에서 챗봇기반 영어학습에 대한 새로운 가능성을 모색하고, 효과적인 챗봇활용을 위한 제언을 도출하고 있다.
With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.
This paper deals with voice similarities between sisters who are supposed to have common physiological characteristics from a single biological mother. Nine pairs of sisters who are believed to have similar voices participated in this experiment. The speech samples obtained from one pair of sisters were eliminated in the analysis because their perceptual score was relatively low. The words were measured in both isolation and context, and the subjects were asked to read the text five times with about three seconds of interval between readings. Recordings were made at natural speed in a quiet room. The data were analyzed in pitch and formant frequencies using CSL (Computerized Speech Lab) and PCQuirer. It was found that data of the initial vowels are much more similar and homogeneous than those of vowels in other positions. The acoustic data showed that voice similarities are strikingly high in both pitch and formant frequencies. It is assumed that statistical data obtained from this experiment can be used as a guideline for modelling speaker identification and speaker verification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.