• Title/Summary/Keyword: Vocal tract length normalization

Search Result 10, Processing Time 0.022 seconds

Vocal Tract Length Normalization for Speech Recognition (음성인식을 위한 성도 길이 정규화)

  • 지상문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1380-1386
    • /
    • 2003
  • Speech recognition performance is degraded by the variation in vocal tract length among speakers. In this paper, we have used a vocal tract length normalization method wherein the frequency axis of the short-time spectrum associated with a speaker's speech is scaled to minimize the effects of speaker's vocal tract length on the speech recognition performance In order to normalize vocal tract length, we tried several frequency warping functions such as linear and piece-wise linear function. Variable interval piece-wise linear warping function is proposed to effectively model the variation of frequency axis scale due to the large variation of vocal tract length. Experimental results on TIDIGITS connected digits showed the dramatic reduction of word error rates from 2.15% to 0.53% by the proposed vocal tract normalization.

Robust Speech Recognition using Vocal Tract Normalization for Emotional Variation (성도 정규화를 이용한 감정 변화에 강인한 음성 인식)

  • Kim, Weon-Goo;Bang, Hyun-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.773-778
    • /
    • 2009
  • This paper studied the training methods less affected by the emotional variation for the development of the robust speech recognition system. For this purpose, the effect of emotional variations on the speech signal were studied using speech database containing various emotions. The performance of the speech recognition system trained by using the speech signal containing no emotion is deteriorated if the test speech signal contains the emotions because of the emotional difference between the test and training data. In this study, it is observed that vocal tract length of the speaker is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, vocal tract normalization method is used to develop the robust speech recognition system for emotional variations. Experimental results from the isolated word recognition using HMM showed that the vocal tract normalization method reduced the error rate of the conventional recognition system by 41.9% when emotional test data was used.

Robust Speech Parameters for the Emotional Speech Recognition (감정 음성 인식을 위한 강인한 음성 파라메터)

  • Lee, Guehyun;Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.681-686
    • /
    • 2012
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust emotional speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient, root-cepstral coefficient, PLP coefficient and frequency warped mel-cepstral coefficient in the vocal tract length normalization method were used as feature parameters. And CMS (Cepstral Mean Subtraction) and SBR(Signal Bias Removal) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using frequency warped RASTA mel-cepstral coefficient in the vocal tract length normalized method, its derivatives and CMS as a signal bias removal showed the best performance.

Emotion Robust Speech Recognition using Speech Transformation (음성 변환을 사용한 감정 변화에 강인한 음성 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.683-687
    • /
    • 2010
  • This paper studied some methods which use frequency warping method that is the one of the speech transformation method to develope the robust speech recognition system for the emotional variation. For this purpose, the effect of emotional variations on the speech signal were studied using speech database containing various emotions and it is observed that speech spectrum is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, new training method that uses frequency warping in training process is presented to reduce the effect of emotional variation and the speech recognition system based on vocal tract length normalization method is developed to be compared with proposed system. Experimental results from the isolated word recognition using HMM showed that new training method reduced the error rate of the conventional recognition system using speech signal containing various emotions.

Speech Parameters for the Robust Emotional Speech Recognition (감정에 강인한 음성 인식을 위한 음성 파라메터)

  • Kim, Weon-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

Modified Mel Frequency Cepstral Coefficient for Korean Children's Speech Recognition (한국어 유아 음성인식을 위한 수정된 Mel 주파수 캡스트럼)

  • Yoo, Jae-Kwon;Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • This paper proposes a new feature extraction algorithm to improve children's speech recognition in Korean. The proposed feature extraction algorithm combines three methods. The first method is on the vocal tract length normalization to compensate acoustic features because the vocal tract length in children is shorter than in adults. The second method is to use the uniform bandwidth because children's voice is centered on high spectral regions. Finally, the proposed algorithm uses a smoothing filter for a robust speech recognizer in real environments. This paper shows the new feature extraction algorithm improves the children's speech recognition performance.

Korean Broadcast News Transcription Using Morpheme-based Recognition Units

  • Kwon, Oh-Wook;Alex Waibel
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.3-11
    • /
    • 2002
  • Broadcast news transcription is one of the hardest tasks in speech recognition because broadcast speech signals have much variability in speech quality, channel and background conditions. We developed a Korean broadcast news speech recognizer. We used a morpheme-based dictionary and a language model to reduce the out-of·vocabulary (OOV) rate. We concatenated the original morpheme pairs of short length or high frequency in order to reduce insertion and deletion errors due to short morphemes. We used a lexicon with multiple pronunciations to reflect inter-morpheme pronunciation variations without severe modification of the search tree. By using the merged morpheme as recognition units, we achieved the OOV rate of 1.7% comparable to European languages with 64k vocabulary. We implemented a hidden Markov model-based recognizer with vocal tract length normalization and online speaker adaptation by maximum likelihood linear regression. Experimental results showed that the recognizer yielded 21.8% morpheme error rate for anchor speech and 31.6% for mostly noisy reporter speech.

Quantization Based Speaker Normalization for DHMM Speech Recognition System (DHMM 음성 인식 시스템을 위한 양자화 기반의 화자 정규화)

  • 신옥근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 2003
  • There have been many studies on speaker normalization which aims to minimize the effects of speaker's vocal tract length on the recognition performance of the speaker independent speech recognition system. In this paper, we propose a simple vector quantizer based linear warping speaker normalization method based on the observation that the vector quantizer can be successfully used for speaker verification. For this purpose, we firstly generate an optimal codebook which will be used as the basis of the speaker normalization, and then the warping factor of the unknown speaker will be extracted by comparing the feature vectors and the codebook. Finally, the extracted warping factor is used to linearly warp the Mel scale filter bank adopted in the course of MFCC calculation. To test the performance of the proposed method, a series of recognition experiments are conducted on discrete HMM with thirteen mono-syllabic Korean number utterances. The results showed that about 29% of word error rate can be reduced, and that the proposed warping factor extraction method is useful due to its simplicity compared to other line search warping methods.

Comparison of Korean Speech De-identification Performance of Speech De-identification Model and Broadcast Voice Modulation (음성 비식별화 모델과 방송 음성 변조의 한국어 음성 비식별화 성능 비교)

  • Seung Min Kim;Dae Eol Park;Dae Seon Choi
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.56-65
    • /
    • 2023
  • In broadcasts such as news and coverage programs, voice is modulated to protect the identity of the informant. Adjusting the pitch is commonly used voice modulation method, which allows easy voice restoration to the original voice by adjusting the pitch. Therefore, since broadcast voice modulation methods cannot properly protect the identity of the speaker and are vulnerable to security, a new voice modulation method is needed to replace them. In this paper, using the Lightweight speech de-identification model as the evaluation target model, we compare speech de-identification performance with broadcast voice modulation method using pitch modulation. Among the six modulation methods in the Lightweight speech de-identification model, we experimented on the de-identification performance of Korean speech as a human test and EER(Equal Error Rate) test compared with broadcast voice modulation using three modulation methods: McAdams, Resampling, and Vocal Tract Length Normalization(VTLN). Experimental results show VTLN modulation methods performed higher de-identification performance in both human tests and EER tests. As a result, the modulation methods of the Lightweight model for Korean speech has sufficient de-identification performance and will be able to replace the security-weak broadcast voice modulation.

Comparison of Adult and Child's Speech Recognition of Korean (한국어에서의 성인과 유아의 음성 인식 비교)

  • Yoo, Jae-Kwon;Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.138-147
    • /
    • 2011
  • While most Korean speech databases are developed for adults' speech, not for children's speech, there are various children's speech databases based on other languages. Because there are wide differences between children's and adults' speech in acoustic and linguistic characteristics, the children's speech database needs to be developed. In this paper, to find the differences between them in Korean, we built speech recognizers using HMM and tested them according to gender, age, and the presence of VTLN(Vocal Tract Length Normalization). This paper shows the speech recognizer made by children's speech has a much higher recognition rate than that made by adults' speech and using VTLN helps to improve the recognition rate in Korean.