This paper analyzes the vocal tract area estimation algorithm used as a part of a speech analysis program to help deaf children correct their pronunciations by comparing their vocal tract shape with normal children's. Assuming that a vocal tract is a concatenation of cylinder tubes with a different cross section, we compute the relative vocal tract area of each tube using the reflection coefficients obtained from linear predictive coding. Then, we obtain the absolute vocal tract area by computing the height of lip opening with a formula modified for children's speech. Using the speech data for five Korean vowels (/a/, /e/, /i/, /o/, and /u/), we investigate the effects of the sampling frequency, frame size, and model order on the estimated vocal tract shape. We compare the vocal tract shapes obtained from deaf and normal children's speech.
This paper analyzes the vocal tract area estimation algorithm used as a part of a speech analysis program to help deaf children correct their pronunciations by comparing their vocal tract shape with normal children's. Assuming that a vocal tract is a concatenation of cylinder tubes with a different cross section, we compute the relative vocal tract area of each tube using the reflection coefficients obtained from linear predictive coding. Then, obtain the absolute vocal tract area by computing the height of lip opening with a formula modified for children's speech. Using the speech data for five Korean vowels (/a/, /e/, /i/, /o/, and /u/), we investigate the effects of the sampling frequency, frame size, and model order. We compare vocal tract shapes obtained from deaf and normal children's speech.
In voice pathology, various measurements calculated from pitch values are proposed to show voice quality. However, those measurements frequently seem to be inaccurate and unreliable because they are based on some wrong pitch values determined from pathological voice data. In order to solve the problem, we compared several pitch estimation methods to propose a better one in pathological voices. From the database of 99 pathological voice and 30 normal voice data, errors derived from pitch estimation were analyzed and compared between pathological and normal voice data or among the vowels produced by patients with benign vocal fold lesions. Results showed that gross pitch errors were observed in the cases of pathological voice data. From the types of pathological voices classified by the degree of aperiodicity in the speech signals, we found that pitch errors were closely related to the number of aperiodic segments. Also, the autocorrelation approach was found to be the most robust pitch estimation in the pathological voice data. It is desirable to conduct further research on the more severely pathological voice data in order to reduce pitch estimation errors.
본 논문에서는 커널 백피팅 알고리즘에 가중 ${\beta}$-지수승 최소평균제곱오차 추정방식(weighted ${\beta}$-order minimum mean square error: WbE)을 적용한 보컬음 분리 방식에 대해 제안한다. 음성 향상 방식에서, WbE는 진폭 성분 기반 MMSE(Minimum Mean Square Error) 추정방식, 로그 스펙트럼 진폭 기반 MMSE 추정방식 등과 같은 기존의 베이지안(Bayesian) 기반의 추정방식들 보다 객관적 및 주관적 측면에서 모두 보다 높은 성능을 나타내는 방식으로 잘 알려져 있다. 이에 본 논문에서는 기본적인 반복적 커널 백피팅 알고리즘에 WbE를 적용하여 음악 신호에서의 보컬음 분리 성능을 향상시키고자 하였다. 실험결과는 본 논문에서 제안한 방식이 기존의 분리 방식보다 분리 성능이 더 뛰어나다는 것을 보인다.
본 논문에서는 SAOC의 Karaoke 모드의 출력 신호 내에 존재하는 잔여 보컬 성분을 추정하여 억제시킴으로써 음질을 향상시킬 수 있는 알고리듬을 제안하였다. 잔여 보컬 성분은 Karaoke 모드 환경으로 합성된 신호와 Solo 모드로 새로 합성된 신호를 서로 교차 예측하여 추정될 수 있다. 그러나, 두 신호는 모두 같은 다운 믹스 신호로부터 합성되는 신호이므로, 두 신호간의 높은 상관성으로 인하여 가라오케 신호내의 잔여 보컬 성분뿐만 아니라 음악 성분도 함께 제거된다. 이러한 열화를 해결하기 위해, 본 논문에서는 교차 예측 과정에서 심리 음향적 특성을 고려한 예측 방해 신호를 적용하였으며, 이 신호의 크기는 심리음향모델의 마스킹 특성에 따라 음악적 음질의 열화가 최소화되도록 적응적으로 설정되었다. 실험은 보컬 객체가 포함된 음악 신호에 대해서 객관적 및 주관적 음질평가를 수행하였으며, 전체적으로 성능 향상이 있음을 확인하였다.
본 논문에서는 커널 모델과 장단기 기억(Long-Short Term Memory, LSTM) 신경망을 결합한 보컬 및 비보컬 분리 방식을 제안한다. 기존의 음원 분리 방식은 비보컬 음원만 있는 구간에서 음원을 오추정하여 불필요한 비보컬 음원을 출력하는 한계가 있다. 따라서 본 논문에서는 커널 모델 기반의 보컬음 분리 방식에 LSTM 신경망 기반의 보컬 구간 분류 방식을 결합하여 보컬 음원의 오추정 문제를 개선하고 분리 성능을 향상시키고자 하였다. 또한 본 논문에서는 방식간의 결합 구조에 따라 병렬 결합형 분리 알고리즘과 직렬 결합형 분리 알고리즘을 제안하였으며, 실험을 통해 제안하는 방식들이 기존의 방식에 비해 더욱 향상된 분리 성능을 보이는 것을 확인할 수 있었다.
The common form of pre-emphasis filter is $H(z)\;=\;1\;- az^{-1}$, where a typically lies between 0.9 and 1.0 in voiced signal. Also, this value reflects the degree of filter and equals R(1)/R(0) in Auto-correlation method. This paper proposes a new flattening algorithm to compensate the weaked high frequency components that occur by vocal cord characteristic. We used interval information of LSP to estimate formant frequency. After obtaining the value of slope and inverse slope using linear interpolation among formant frequency, flattening process is followed. Experimental results show that the proposed algorithm flattened the weaked high frequency components effectively. That is, we could improve the flattened characteristics by using interval information of LSP as flattening factor at the process that compensates weaked high frequency components.
기존의 성도 정규화 방법은 화자 간 정규화의 정확성을 개선하기 위한 매우 좋은 방법이다. 본 논문에서는 피치 변경 발성에 기반을 둔 새로운 화자 내 warping 인수 추정 방법을 제안한다. 화자 내 피치 변경 발성은 성문과 성도에 의해 발생되는 음성의 음향학적 차이 때문에 음성의 특징 공간 분포는 다르게 나타날 것이다. 발성의 변동은 frequency 성분과 amplitude 성분의 두가지 유형이 있다. 성도 정규화는 화자 간 정규화 방법들 중에서 주파수 정규화 방법이다. 여기에서는 화자 내 정규화를 위하여 진폭 변동을 정규화하는 방법을 제안한다. 참조 피치와 입력 피치의 역비례 계산에 의해서 진폭 warping 인수를 결정하는 것이 가능하다. 성능 평가를 위한 인식 실험 결과 숫자와 단어 인식에서 0.4%∼2.3% 정도의 인식 오류가 감소되었다.
음성 신호처리 환경에서 잡음이 섞인 신호를 개선할 목적으로 음성향상 기법이 많이 이용되고 있다. 잡음추정 알고리즘은 변화하는 환경에 빠르게 적응할 수 있어야 하며 음성신호의 영향을 줄이기 위해 음성신호가 존재하지 않는 구간에서만 잡음의 파워를 갱신한다. 이러한 방법은 음성구간검출이 선행되어야 한다. 그러나 잡음에 열화된 음성신호에 묵음구간이 존재하지 않을 경우, 위와 같이 음성검출을 통한 묵음구간에서의 잡음 추정 방법 및 SNR 추정 방법이 적용될 수 없다. 본 논문에서는 묵음구간이 존재하지 않는 연속음성신호에서 SNR을 추정하는 기법을 제안한다. 유성음의 안정구간에서는 단구간 내 피치의 변화가 매우 작아 피치주기에 따른 음성신호의 파형이 유사하게 나타난다. 따라서 잡음이 음성에 부가되었을 때 피치주기에 따른 인접파형의 유사도를 통해 SNR을 추정한다. 무성음에서는 잡음의 영향이 수신신호의 성도성분 추정에 영향을 미치기 때문에 잡음환경에서 추정된 성도성분과 수신신호 스펙트럼 간의 거리를 이용하여 SNR을 추정한다. 마지막으로, 음성신호의 에너지가 유성음에 대부분 분포하기 때문에, 부가성 잡음 환경에서 유성음의 에너지를 음성신호의 에너지로 근사화하여 SNR을 추정할 수 있다.
Robust pitch estimation is an important study in many areas of speech processing. In voice pathology, diverse statistics extracted form pitch were commonly used to test voice quality. In this study, we compared several established pitch detection algorithms (PDAs) for verification of adequacy of the PDAs. In the database of total pathological voices of 99 and normal voices of 30, an analysis of errors related with pitch detection was evaluated between pathological and normal voices, or among the types of pathological voices such as benign vocal fold lesions; polyp, nodule, and cysts. Consequently, it is required to survey the severity of tested voice in order to obtain accurate pitch estimates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.