• Title/Summary/Keyword: Vivid yellow diamond

Search Result 3, Processing Time 0.016 seconds

Identification for the Vivid Yellow Diamonds (비비드 옐로우 다이아몬드의 감별 방안 연구)

  • Song, Jeongho;Yun, Yury;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.493-497
    • /
    • 2012
  • We propose a new reliable, fast, and low cost identification method for similarly looking 0.3ct vivid yellow color of natural, HPHT treated, and synthesized diamonds. Conventional optical microscopy as well as low temperature PL(photoluminescence), FT-IR, UV-VIS-NIR, micro-Raman spectroscopy, and vibrating sample magnetometry(VSM) characterization were executed. We could not distinguish the natural diamonds from the treated or the synthesized stones with an optical microscopy, PL, FT-IR, and UV-VIS-NIR spectroscopy. However, we could identify the treated diamond with micro-Raman spectroscopy due to unique $1440cm^{-1}$ peak appearance. VSM revealed easily the synthesized diamond because of its ferromagnetic behavior. Our preliminary propose on employing the Micro-Raman spectroscopy and VSM might be suitable for identification of the similar looking vivid yellow colored diamonds.

The Color Enhancement of Brown Tinted Diamonds with Annealing Temperatures in 5.6 Gpa-10 min HPHT (천연 갈색다이아몬드의 5.6 Gpa-10분 조건에서 처리온도에 따른 색 변화 연구)

  • Li, Feng;Song, Oh-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • The color of a natural diamond that contains nitrogen impurities can be enhanced by a high pressure high temperature (HPHT) treatment. Type IaAB diamond samples containing nitrogen impurities were executed by HPHT process of 5.6 Gpa, 10 min by varying the annealing temperature at 1600, 1650, and $1700^{\circ}C$. Property characterization was carried out using an optical microscope, FT-IR spectrometer, low-temperature PL spectrometer, and micro Raman spectrometer. By observing optical micrographs, it can be seen that diamond sample began to alter its color to vivid yellow at $1700^{\circ}C$. In the FT-IR spectrum, there were no Type changes of the diamond samples. However, amber centers leading to brown colors lessened after $1700^{\circ}C$ annealing. In the PL spectrum, all the H4 centers became extinct, while there were no changes of yellow color center H3 before or after treatment. In the Raman spectrum, no graphite spots were detected. Consequently, diamond color enhancement can be done by higher than $1700^{\circ}C$ HPHT annealing at 5.6 GPa-10 min.

Surface Graphite Formation of the Brown Colored Type I Diamonds During High Pressure Annealing (갈색 Type I 다이아몬드의 고압 열처리에 따른 표면 흑연화 생성 연구)

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.614-619
    • /
    • 2012
  • We investigated color and graphite layer formation on the surface of Type I tinted brown diamonds exposed for 5 minutes under a high-pressure high-temperature (HPHT) condition in a stable graphite regime. We executed the HPHT processes of Process I, varying the temperature from $1600^{\circ}C$ to $2300^{\circ}C$ under 5.2 GPa pressure for 5 minutes, and Process II, varying the pressure from 4.2 to 5.7 GPa at $2150^{\circ}C$ for 5 minutes. Optical microscopy and micro-Raman spectroscopy were used to check the microstructure and surface layer phase evolution. For Process I, we observed a color change to vivid yellow and greenish yellow and the growth of a graphite layer as the temperature increased. For Process II, the graphite layer thickness increased as the pressure decreased. We also confirmed by 531 nm micro-Raman spectroscopy that all diamonds showed a $1440cm^{-1}$ characteristic peak, which remained even after HPHT annealing. The results implied that HPHT-treated colored diamonds can be distinguished from natural stones by checking for the existence of the $1440cm^{-1}$ peak with 531 nm micro-Raman spectroscopy.