• Title/Summary/Keyword: Vitrification Plant

Search Result 62, Processing Time 0.027 seconds

Efficient Cryopreservation of in vitro Grown Shoot Tips of Pear (Pyrus spp.) by Droplet-vitrification

  • Jae-Young Song;Jinjoo Bae;Ji-Won, Han;Ho Cheol Ko;Ho-sun Lee;Sung-Hee Nam;Jung-RoLee;Byeong Hyeon Yun;Keumsun Kim;Kyungho Won;Il Sheob Shin
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.571-579
    • /
    • 2023
  • In this study, cryopreservation by droplet-vitrification was applied to pear (Pyrus spp.) germplasm. We focused on the development and assessment of various strategies for the selection of suitable tissue, osmoprotection, and dehydration. We also evaluated post-thaw recovery of cryopreserved explants by droplet-vitrification. Preferentially, we tested the effects of preculture and loading treatments to determine which tissues were more suitable, either the apical shoot tips or the axillary buds. Apical shoot tips showed the better regrowth rate than in vitro axillary buds. The most effective techniques for cryopreservation were as follows. Shoots from in vitro seedlings which had been cultured for about 5-6 weeks were cold-hardened at 4℃ for one week, excised shoot tips were precultured on liquid MS medium including 0.3 M sucrose for 31 hours and 0.7 M sucrose for 17 hours, osmoprotected in loading solution (LS) for 40 min, and then cryoprotected in dehydration solution (PVS3) for 90 min. In addition, we found that regrowth rates of explants on regrowth medium after exposure to liquid nitrogen (LN) were higher than those on MS medium. Results indicated that the highest regrowth percentage was 95.6% for 'Bartlett' cultivar and 68.9% for 'BaeYun No.3' cultivar. Consequently, apical shoot tips of two pear cultivars, 'Bartlett' (P. communis) and 'BaeYun No.3' (P. pyrifolia), were successfully cryopreserved by droplet-vitrification. Results of this study show that the enhanced droplet-vitrification method described in the present study could be used as an effective means for long-term storage of pear genetic resources.

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

Cryopreservation of in vitro Grown Shoot Tips of Two Freesia hybrida Cultivars by Droplet-vitrification

  • Jinjoo Bae;Jae-Young Song;Ji-Won Han;Ho Cheol Ko;Sung-Hee Nam;Jung-Ro Lee;Ho-sun Lee
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.562-570
    • /
    • 2023
  • The droplet-vitrification technique for cryopreservation has proven successful across a diverse range of germplasm, ensuring safe and effective long term preservation. In this study, we investigate an effective cryopreservation protocol using the droplet-vitrification technique for shoot tips of Freesia hybrida cultivars 'Sunny Gold' and 'Sweet Lemon'. To determine optimal conditions for Freesia cryopreservation, we employed a carefully selected standard procedure along with additional treatments and alternative solutions. For 'Sunny Gold', the highest regrowth rate of 24% was achieved when shoot tips underwent dehydration with PVS3 solution for 120 minutes before direct immersion in liquid nitrogen (LN) for 1 hour, coupled with a standard protocol involving a two-step preculture with 0.3 M - 0.5 M sucrose, loading with C4 for 40 minutes, and unloading with 0.8 M sucrose for 40 minutes. In the case of 'Sweet Lemon,' regrowth of cryopreserved shoot tips was observed with dehydration treatments, including PVS2 (A3) for 60 minutes and PVS3 (B1) for 60 minutes, as well as longer exposure. The results reflect the distinct sensitivity of shoot tips to chemical toxicity and osmotic stress in these two genotypes. This study provides valuable evidence to consistently enhance the effectiveness of cryopreservation methods for the long-term conservation of Freesia germplasm.

Cryopreservation of Citrus limon (L.) Burm. F Shoot Tips Using a Droplet-vitrification Method

  • Yi, Jung-Yoon;Balaraju, Kotnala;Baek, Hyung-Jin;Yoon, Mun-Seop;Kim, Haeng-Hoon;Lee, Young-Yi
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.684-694
    • /
    • 2018
  • This study describes the successful establishment of a cryopreservation protocol for Citrus limon cultivars: 'Frost Eureka limon' and 'Cook Eureka limon', using a droplet-vitrification method. The shoot tips that were excised from in vitro grown seedlings of the two cultivars were preserved in liquid nitrogen (LN) and successfully regenerated into whole plants. Excised shoot tips were pre-cultured for 1 or 2 days in 0.3 M and 0.5 M sucrose solutions at $25^{\circ}C$ and incubated in a loading solution (LS) composed of 17.5% glycerol + 17.5% sucrose in Murashige and Skoog (MS) medium for 40 min at $25^{\circ}C$. Prior to direct immersion in LN for 1 h, the shoot tips were dehydrated with plant vitrification solution 2 (PVS2) at $0^{\circ}C$ or PVS3 at $25^{\circ}C$. The frozen shoot tips were re-warmed and unloaded with 1.2 M sucrose in $\text\tiny{^1/_2}$ MS for 30 min at $25^{\circ}C$. Shoot tips were post-cultured overnight on survival medium and then micrografted onto 'trifoliate orange' (Poncirus trifoliate (L.) Raf. seedling rootstocks for recovery and to produce whole plants. The highest regrowth rates were 53.5% and 50.3% for cryopreserved shoot tips of 'Frost Eureka limon' and 'Cook Eureka limon', respectively, when pre-cultured in 0.3 M and 0.5 M sucrose concentrations in a sequencing manner, with LS and treated with PVS2 for 60 min at $0^{\circ}C$. We also investigated whether the ammonium ion concentration on post-culture medium affected the viability of the cryopreserved Citrus shoot tips. The viability of cooled samples, following culturing on woody plant media (WPM) containing $\text\tiny{^1/_4}$ ammonium nitrate overnight before micrografting, was the highest (70.3%) in 'Frost Eureka limon'. The study described here is a cost-effective and safe method to conserve Citrus fruit cultivars, for the improvement and large-scale multiplication of fruit plants and for breeding disease resistance.

Cryopreservation of in vitro Grown Shoot Tips of Korean Potato Varieties by Droplet-vitrification

  • Ji-Won Han;Jinjoo Bae;Jae-Young Song;Ho Chul Ko;Sung-Hee Nam;Jung-ro Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.33-33
    • /
    • 2023
  • Potatoes are the world's 4th major food crop after maize, rice, and wheat and also are a staple food for 1.3 billion people. Due to their wide adaptability to various environmental conditions, their yeild capacity, and high commercial value, potatoes have contributed to global food security. Many potato germplasms are commonly preserved as whole plants in fields or in storage to maintain their particular genetic combinations. However, field maintenance is expensive and has the risk of potential losses from diseases, pests, plant ageing and climate change. Over the past four decades, meaningful efforts have been made toward the safe long-term conservation of potatoes through cryopreservation methods such as droplet-vitrification. In this study, we tested 4 Korean potato varieties('Golden Egg', 'Golden Ball', 'Ja-Young' and 'Ha-Ryeong') with the modified potato droplet -vitrification protocol. Potato shoot tips are precultured in a sucrose-enriched medium(0.3 and 0.7M for 7 and 17hrs, respectively) and submitted to a loading step with C4 solution for osmoprotection. The treated explants were dehydrated with Plant Vitrification Solution(PVS)2 which is 80% A3 solution in ice for 30 minutes. Thawing and unloading steps were performed with 0.8M sucrose solution for 30 sec(40℃) followed by 30min(25℃, room temperature). In a potato post-culture medium(MS+0.1 mg·L-1 GA3+0.1 mg·L-1 kinetin), we obtained a survival rates of post-thawed explants ranging 16.1-82.2%. The results suggest that modified and optimized protocols are required dependinig on every cultivar, genetic and ecological types. To achieve higher survival and regeneration rates, each step within the cryoprocedure must be carefully optimized.

  • PDF

Development of Cryopreservation Protocols through Droplet-vitrification and its Application to Vegetatively Propagated Crop Germplasm (영양체 유전자원의 작은방울-유리화법에 의한 초저온동결보존 실용화기술개발)

  • Kim, Haeng-Hoon;Yi, Jung-Yoon;No, Na-Young;Cho, Gyu-Taek;Yoon, Mun-Sup;Baek, Hyung-Jin;Kim, Chung-Kon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12-12
    • /
    • 2010
  • We developed droplet-vitrification protocol, a combination of droplet-freezing and solution-based vitrification, and applied to germplasm collections of garlic, potato, lily as well as cell lines, including hairy roots, somatic embryos. To establish a garlic cryobank, four Korean garlic field collections at Danyang, Suwon, Mokpo and Namhae were cryopreserved last five years. The protocol applied consisted of preculture for 3-4 days at $10^{\circ}C$ on solid MS medium with 0.3M sucrose, loading for 40 min in liquid medium with 35% PVS3, dehydration with PVS3 for 150 min, cooling in $5{\mu}l$ droplets of PVS3 placed on aluminum foil strips by dipping these strips in liquid nitrogen, warming them by plunging the foil strips into pre-heated($40^{\circ}C$) 0.8M sucrose solution for 30s. A total of over 900 accessions of garlic were stored in liquid nitrogen for long-term conservation using unripe inflorescences, cloves or bulbils. Twelve alternative plant vitrification solutions were designed by modifying cryoprotectant concentrations from the original PVS2 and PVS3. The results suggest that PVS2-based vitrification solutions with increased glycerol and sucrose and/or decreased DMSO and EG concentrations can be applied for medium size explants which are tolerant to chemical toxicity and moderately sensitive to osmotic stress. PVS3 and variants can be used widely when samples are heterogeneous, of large size and/or very sensitive to chemical toxicity and tolerant to osmotic stress.

  • PDF

Cryopreservation of in vitro-cultured Axillary Shoot Tips of Japanese Bead Tree (Melia azedarach) using Vitrification Technique

  • Yang Byeong-Hoon;Kim Hyun-Tae;Park Ju-Yong;Park Young-Goo
    • Korean Journal of Plant Resources
    • /
    • v.19 no.3
    • /
    • pp.385-391
    • /
    • 2006
  • In vitro-grown axillary buds of Melia aredarach were successfully cryopreserved by vitrification. On the MS medium supplemented with BA 1 mg/L, multiple shoots were developed within $4{\sim}5$ weeks. Plantlets of Melia azedarach were cold-hardened at $10^{\circ}C$ for a 16-hr photo-period for 6 weeks. Excised axillary shoot-tips from hardened plantlets were precultured on a solidified Murashige & Skoog agar medium (MS) supplemented with 0.7 M sucrose for 1 day at $25^{\circ}C$. Axillary shoot-tip meristems wert dehydrated using a highly concentrated vitrification solution (PVS2) for 60 min at $0^{\circ}C$ prior to a direct plunge into liquid nitrogen (LN). The PVS2 vitrification solution consisted of 30% glycerol (w/v), 15% ethylene glycol (w/v), 15% DMSO (w/v) in MS medium containing 0.4M sucrose. After short-term warming in a water bath at $40^{\circ}C$, the meristems were transferred into 2 ml of MS medium containing 1.2M sucrose for 15 min and then planted on solidified MS culture medium. Successfully vitrified and warmed meristems resumed growth within 2 weeks and directly developed shoots without intermediary callus formation. The survival rate of cold-hardened plantlets for 3 and 4 weeks was 90%. We did not find any difference in PCR-band patterns between control and cryopreserved plants. This method appears to be a promising technique for cryopreserving axillary shoot-tips from in vitro-grown plantlets of Medicinal plants.

A Successful Regeneration from Shoot Tips of Chrysanthemum morifolium (Ramat.) following Cryopreservation by Droplet-vitrification

  • Yi, Jung-Yoon;Balaraju, Kotnala;Baek, Hyung-Jin;Yoon, Mun-Seop;Kim, Haeng-Hoon;Lee, Young-Yi
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.675-683
    • /
    • 2018
  • This study describes an efficient and widely applicable droplet-vitrification following cryopreservation for shoot tips of Chrysanthemum morifolium (Ramat.) cvs. 'Borami' and 'Yes morning'. The shoot tips of Chrysanthemum were precultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3-0.7 M). Precultured explants were treated with loading solution (LS, C6) containing glycerol 20% and sucrose 20% for 30 min and exposed to dehydration solution (B5) containing 40% of glycerol and 40% of sucrose for 60 min at $25^{\circ}C$, and then transferred onto droplets containing $2.5{\mu}l$ PVS3 on sterilized aluminum foils ($4cm{\times}0.5cm$) prior to direct immersion in liquid nitrogen (LN) for 1 h. The highest regeneration rate (%) was obtained when shoot tips were precultured with treatment-2 (exposing of shoot tips to MS + 0.3M sucrose for 30 h and then treated with MS+0.5 M sucrose for 16 h) at $25^{\circ}C$ in both the cultivars. The viability of cooled samples, followed by culturing on $NH_4NO_3$-free MS medium for first 5 days was increased to two-fold (80.7%) regrowth rate over those cultured on normal MS medium or MS medium containing plant growth regulators. This result shows droplet-vitrification would be a promising method for cryobanking chrysanthemum germplasm.

Preconditioning for Cryopreservation of in vitro Grown Bulblets of Lily using Droplet-Vitrification

  • Song, Jae-young;Lee, Young-yi;Yi, Jung-yoon;Lee, Jung-ro;Yoon, Mun-sup
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.689-695
    • /
    • 2020
  • This study was conducted to improve and supplement the system of cryopreservation for adventitious bulbs induced by tissue cultured bulb-scales of lily (Lilium spp.) cvs. 'Milky way'. The explants, bulblets and bulb-scale-bulblets, were treated to low temperature (4℃) for 7 days prior to the pre-culture. The adventitious bulbs were pre-cultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3 and 0.7M). The pre-cultured adventitious bulbs were treated to loading solution (LS1 or LS2, C4 or C6) containing 35% of PVS3 (LS1, C4) or 40% of PVS3 (LS2, C6) for 40 min and exposed to dehydration solution (PVS3, B1) containing 50% glycerol and 50% sucrose for 60 min at 25℃. The adventitious bulbs were moved onto droplets containing 3 µl PVS3 on sterilized aluminum foils, and then soaked into liquid nitrogen (LN) for 60 min. The result of highest regrowth rate as 65.7% was obtained in cold treatment (4℃), osmoprotected with LS1 solution, and cultured in PCM3 medium by using bulb-scale-bulblet for cryopreservation. This result shows that droplet-vitrification could be used as a promising method for long-term storage of lily genetic resource.

Preconditioning for Cryopreservation of in vitro Grown Bulblets of Lily using Droplet-Vitrification

  • Jae-young Song;Jinjoo Bae;Young-yi Lee;Jung-yoon Yi;Jung-ro Lee;Mun-sup Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.35-35
    • /
    • 2021
  • This study was conducted to improve and supplement the system of cryopreservation for adventitious bulbs induced by tissue cultured bulb-scales of lily (Lilium spp.) cvs. 'MilkyWay'. The explants, bulblets and bulb-scale-bulblets, were treated to low temperature (4℃) for 7 days prior to the pre-culture. The adventitious bulbs were pre-cultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3 and 0.7M). The pre-cultured adventitious bulbs were treated to loading solution (LS1 or LS2, C4 or C6) containing 35% of PVS3 (LS1, C4) or 40% of PVS3 (LS2, C6) for 40 min and exposed to dehydration solution (PVS3, B1) containing 50% glycerol and 50% sucrose for 60 min at 25℃. The adventitious bulbs were moved onto droplets containing 3 ㎕ PVS3 on sterilized aluminum foils, and then soaked into liquid nitrogen (LN) for 60 min. The result of highest regrowth rate as 65.7% was obtained in cold treatment (4℃), osmoprotected with LS1 solution, and cultured in PCM3 medium by using bulb-scale-bulblet for cryopreservation. This result shows that droplet-vitrification could be used as a promising method for long-term storage of lily genetic resource.