• 제목/요약/키워드: Vitrification Plant

검색결과 62건 처리시간 0.027초

Cryopreservation of Hevea brasiliensis zygotic embryos by vitrification and encapsulation-dehydration

  • Nakkanong, Korakot;Nualsri, Charassri
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.333-339
    • /
    • 2018
  • The mature zygotic embryos of the Hevea brasiliensis were cryopreserved through the use of the vitrification and encapsulation/dehydration techniques. In all the experiments, the zygotic embryos were pre-cultured for three days in the MS medium supplemented with 0.3 M sucrose before they were used for the cryopreservation technique. In the vitrification procedure, the effect of the plant vitrification solutions (PVS2 and PVS3) and exposure time were studied. The highest survival rate (88.87%) and regrowth (66.33%) were achieved when the precultured zygotic embryos were incubated in a loading solution for 20 minutes at $0^{\circ}C$. They were subsequently exposed to PVS2 for 120 minutes at $0^{\circ}C$ and plunged directly into liquid nitrogen. Cryopreservation by the encapsulation-dehydration method was successfully done by leaving the encapsulated zygotic embryos in a laminar flow for 4 hours prior to plunging into a LN. The survival rate and regrowth of the encapsulated zygotic embryos were 37.50% and 27.98%, respectively. The cryopreserved zygotic embryos were able to develop into whole plants.

Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds

  • Suzuki, Mitsuteru;Tandon, Pramod;Ishikawa, Masaya;Toyomasu, Takayuki
    • Plant Biotechnology Reports
    • /
    • 제2권2호
    • /
    • pp.123-131
    • /
    • 2008
  • Vitrification methods are convenient for cryopreserving plant specimens, as the specimens are plunged directly into liquid nitrogen (LN) from ambient temperatures. However, tissues and species with poor survival are still not uncommon. The development of vitrification solutions with high survival that cover a range of materials is important. We attempted to develop new vitrification solutions using bromegrass cells and found that VSL, comprising 20% (w/v) glycerol, 30% (w/v) ethylene glycol, 5% (w/v) sucrose, 10% (w/v) DMSO and 10 mM $CaCl_2$, gave the highest survival following cryopreservation, as determined by fluorescein diacetate staining. However, the cryopreserved cells showed little regrowth, for unknown reasons. To check its applicability, VSL was used to cryopreserve gentian axillary buds and the performance was compared with those of conventional vitrification solutions. Excised gentian stem segments with axillary buds (shoot apices) were two-step precultured with sucrose to induce osmotic tolerance prior to cryopreservation. Gentian axillary buds cryopreserved using VSL following the appropriate preculturing approach exhibited 78% survival (determined by the regrowth capacity), which was comparable to PVS2 and PVS1 and far better than PVS3. VSL had a wider optimal incubation time (20-45 min) than PVS2 and was more suitable for cryopreserving gentian buds. The optimal duration of the first step of the preculture was 7-11 days, and preculturing with sucrose and glucose gave a much higher survival than fructose and maltose. VSL was able to vitrify during cooling to LN temperatures, as glass transition and devitrification points were detected in the warming profiles from differential scanning calorimetry. VSL and its derivative, VSL+, seem to have the potential to be good alternatives to PVS2 for the cryopreservation of some materials, as exemplified by gentian buds.

Cryopreservation of Somatic Embryos of Soapbeny (Sapindus mukorossi Gaertn.) by Vitrification

  • Kim, Hyun-Tae;Yang, Byeong-Hoon;Park, Young-Goo
    • 한국자원식물학회지
    • /
    • 제19권6호
    • /
    • pp.665-669
    • /
    • 2006
  • Somatic embryos do not survive at exposure to liquid nitrogen temperatures without cryoprotective treatments. A simplified technique which simultaneously induces and cryoprotects embryogenic calli using plant vitrification solution 2 (PVS2) followed by dehydration was developed for the cryopreservation of Soap berry genetic resources. Vitrification is a way of removing the moisture in vegetation through PVS2. The PVS2 vitrification solution consisted of 30% glycerol (w/v), 15% ethylene glycol (w/v), 15% Dimethylsulfoxide (w/v) in B5 medium containing 0.4M sucrose. Two tests were done. The one was to eliminate moisture at $0^{\circ}C$ and the other at $25^{\circ}C$. In both cases the best results came out at a vitrification time of $10{\sim}20$ minutes. It was also found that the survival rate was higher at $0^{\circ}C$ than at $25^{\circ}C$. In particular, the survival rate reached more than 80%. Water-damaged embryos turned brown and stoped growth, but energetic embryos took on a milky hue and show a very vigorous growth rate. Successful cryopreservation of somatic embryos of soapberry can be used to establish in vitro genebanks for long-term conservation of Soapberry genetic resources to complement field genebanks and other in vitro methods already being used.

Optimization Conditions for Cryopreservation of Deutzia paniculata Nakai, Endangered Plant

  • Seol, Yuwon;Yong, Seong Hyeon;Choi, Eunji;Jeong, Mi Jin;Suh, Gang Uk;Lee, Cheul Ho;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • 제36권4호
    • /
    • pp.274-280
    • /
    • 2020
  • As the importance of biological resources increases, the conservation technology is becoming important for rarities. This study was conducted to establish an efficient cryopreservation conditions for the Deutzia paniculata, endangered plant species, by using both cryopreservation methods of vitrification and encapsulation. As a result, the sucrose pretreatment seed viability showed up to 30.7% in the treatments. The cryoprotectant treatment improved the viability of the seeds, and was found to be excellent in the vitrification method using PVS3. The vitrification method had over 10% higher germination rate than the seeds preserved by encapsulation. In addition, the germination rate showed a significant difference according to the cryopreservation treatment time, and the germination rate of seeds decreased very much as the long time became longer. Plants germinated from preserved seed in liquid nitrogen showed poor growth compared to untreated, and good growth in PVS3 120 minutes. In addition, the growth of germinated plants by liquid nitrogen treatment time was better in the vitrification method. These results are expected to be useful for long-term preservation of D. paniculata, endangered plants.

Efficient Cryopreservation of In Vitro Grown Shoot Tips of Strawberry (Fragaria × ananassa Duch.) Germplasm Using Droplet-Vitrification

  • Bae, Jinjoo;Lee, Sun-Yi;Song, Jae-Young;Lee, Jung-Ro;Yoon, Munsup;Yi, Jung-Yoon;Kim, Haeng-Hoon;Lee, Young-Yi
    • 한국자원식물학회지
    • /
    • 제34권6호
    • /
    • pp.600-607
    • /
    • 2021
  • Cryopreservation method using a droplet vitrification was applied to the thirty-one strawberry accessions of in vitro grown shoot tips. A protocol with 0.3 - 0.5 M preculture followed by C4 loading and B1 dehydration solutions efficiently implemented cryopreservation of twenty-six strawberry accessions. The highest regrowth rate was 85.8% for PHS0007 and others were ranged between 85.8% and 21.0%. A slightly modified protocol was applied to five accessions. With these two protocols, twenty-eight accessions obtained more than 40% regrowth rate. This study showed that the droplet vitrification method was able to practically implement cryopreservation of in vitro grown shoot tips of broad range of strawberry germplasm (105).

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Kim, Dongsang
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.92-102
    • /
    • 2015
  • Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

Cryopreservation of in Vitro Grown Shoot Tips of Sweet Potato (Ipomoea batatas L.) by the Encapsulation-Vitrification Method

  • Yi, JungYoon;Lee, GiAn;Lee, YoungYi;Gwag, JaeGyun;Son, EunHo;Park, HongJae
    • 한국자원식물학회지
    • /
    • 제29권6호
    • /
    • pp.635-641
    • /
    • 2016
  • Sweet potato (Ipomoea batatas L.) shoot tips grown in vitro were successfully cryopreserved by encapsulation-vitrification. Encapsulated explants are very easily manipulated, due to the relatively large size of the alginate beads, and a large number of samples can be treated simultaneously. In this study, the effects of sucrose preculture, cryoprotectant preculture, and post-warm recovery media on regrowth, following liquid nitrogen (LN) exposure, were investigated to establish an efficient encapsulation-vitrification protocol for sweet potato. Shoot tips of plants grown in vitro were precultured in 0.3 M sucrose for 2 d before encapsulation. Encapsulated shoot tips were pre-incubated in liquid MS (Murashige and Skoog) medium containing 0.5 M sucrose for 16 h, before preculturing in sucrose-enriched medium (0.7 M sucrose) for 8 h. Shoot tips were osmoprotected with 35% plant vitrification solution 3 (PVS3) for 3 h, before being dehydrated with PVS3 for 2 h at $25^{\circ}C$. The encapsulated and dehydrated shoot tips were transferred to 2 mL cryotubes, suspended in 0.5 mL PVS3, and plunged directly into liquid N. High levels of shoot formation were obtained for the cv. Yeulmi (65.7%) and Yeonwhangmi (80.3%). The regrowth rates of cryopreserved samples in Yeulmi (78.9%) and Yeonwhangmi (91.3%), following culture on ammonium-free MS medium for 5 d, were much higher than those cultured on standard MS medium (65.7% and 80.3%, respectively). This encapsulation-vitrification is a promising method for the long-term preservation of sweet potato.

Cryopreservation and low-temperature storage of seeds of Phaius tankervilleae

  • Hirano, Tomonari;Godo, Toshinari;Miyoshi, Kazumitsu;Ishikawa, Keiko;Ishikawa, Masaya;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • 제3권1호
    • /
    • pp.103-109
    • /
    • 2009
  • In this study we established reliable methods for conservation of seeds of Phaius tankervilleae as an orchid genetic resource. The seeds, which were dehydrated to 5% water content and preserved at $4^{\circ}C$, showed no decrease in viability and germinability after three months. After storage for six months, however, the seeds showed a drastic decrease in germinability, even though survival rate was high. For long-term preservation of seeds of P. tankervilleae, cryopreservation is applied to the freshly harvested seeds. When the seeds were cryopreserved by the vitrification method for up to 12 months there was no apparent deterioration effect of storage time. These results indicate that cryopreservation by the vitrification method is useful for long-term conservation of P. tankervilleae seeds, which are difficult to preserve for more than three months under dry and low-temperature conditions.

$\cdot$저준위 방사성폐기물 유리화 시설의 차폐해석에 관한 연구 (A Study on the Shielding Analysis in Vitrification Facility of Low-and Intermediate Level Radioactive Wastes)

  • 이창민;이건재;지평국;박종길;하종현;송명재
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.524-531
    • /
    • 2003
  • $\cdot$저준위 방사성폐기물의 유리화 기술은 체적감소비, 유리고화체의 기계적 및 화학적 안전성 등으로 그 유용성이 입증되어 현재 울진 5,6호기에 상용시설의 건설이 추진되고 있다. 유리화시설은 대상폐기물의 높은 방사능 준위로 인해 방사선 안전 설계를 위해서는 차폐해석이 수반되어야 한다. 그러나 국내에서는 유리화 시설의 건설 및 운영 경험이 없으므로, 본 연구에서는 유리화 시설의 향후 상세 설계와 운영계획에 도움을 줄 수 있는 자료를 얻고자 유리화 실증시설의 구조를 따라 기존의 방사선원항을 이용하여 기기별 선량계산을 통해 방사선 차폐 해석을 수행하였다. 차폐체로서는 경제성과 열저항성이 뛰어난 콘크리트를 고려하였다.

  • PDF

Practical Application of Cryopreservation of In Vitro Grown Shoot Tips of Strawberry (Fragaria × ananassa Duch.) using Droplet-Vitrification

  • Jinjoo Bae;Young-Yi Lee;Jae-Young Song;Jung-Ro Lee;Munsup Yoon
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.36-36
    • /
    • 2021
  • Cryopreservation has been broadly used as an efficient method for a long-term conservation for many types of plants especially vegetatively propagated plants. Among several cryopreservation methods, a droplet-vitrification was the most widely applicable and efficient method. Studies have developed protocols for strawberry using droplet-vitrification method and suggested the practical use of the protocol for large number of germplasm with a little modification. In this study, the droplet vitrification method of shoot tip has been tested on 31 accessions provided around the world. Shoot tips were precultured on Murashige and Skoog (MS) liquid medium supplemented with 0.3~0.5M sucrose. Precultured explants were osmoprotected with loading solution, 35% of PVS3 (C4, 17.5% glycerol and 17.5% sucrose) for 40 min and exposed to dehydration solution, PVS3 (B1, 50% glycerol and 50% sucrose) for 60 min. Then, the explants were transferred onto droplets containing 2.5 uL PVS3 on sterilized aluminum foils prior to direct immersion in liquid nitrogen (LN) for 1hr. The cryopreserved shoot tips were rapidly warmed in a water bath at 40C and then unloaded in MS with 0.8M sucrose for 40 min. The shoot tips were cultured in NH4NO3-free MS post culture medium for 2 weeks. Subsequently, the explants were moved to the MS medium for 6 weeks and evaluated the regrowth rate. By this droplet-vitrification protocol, twenty-four accessions showed at least 40% regrowth rate. Out of 24 accessions, 'Nonsan1ho' had the highest regeneration rate of 85.8% and 'Jumbo pureberry' had the lowest with 42.1%.

  • PDF