• Title/Summary/Keyword: Visualization Model

Search Result 1,055, Processing Time 0.021 seconds

Z-Buffer와 간략화된 모델을 이용한 효율적인 가려지는 물체 제거 기법(Occlusion Culling)에 관한 연구 (A Study on the Efficient Occlusion Culling Using Z-Buffer and Simplified Model)

  • 정성준;이규열;최항순;성우제;조두연
    • 한국CDE학회논문집
    • /
    • 제8권2호
    • /
    • pp.65-74
    • /
    • 2003
  • For virtual reality, virtual manufacturing system, or simulation based design, we need to visualize very large and complex 3D models which are comprising of very large number of polygons. To overcome the limited hardware performance and to attain smooth realtime visualization, there have been many researches about algorithms which reduce the number of polygons to be processed by graphics hardware. One of these algorithms, occlusion culling is a method of rejecting the objects which are not visible because they are occluded by other objects, and then passing only the visible objects to graphics hardware. Existing occlusion culling algorithms have some shortcomings such as the required long preprocessing time, the limitation of occluder shape, or the need for special hardware implementation. In this study, an efficient occlusion culling algorithm is proposed. The proposed algorithm reads and analyzes Z-buffer of graphics hardware using Microsoft DirectX, and then determines each object's visibility. This proposed algorithm can speed up visualization by reading Z-buffer using DirectX which can access hardware directly compared to OpenGL, by reading only the region to which each object is projected instead of reading the whole Z-Buffer, and the proposed algorithm can perform more exact visibility test by using simplified model instead of using bounding box. For evaluation, the proposed algorithm was applied to very large polygonal models. And smooth realtime visualization was attained.

개념 설계과정의 설계정보가시화를 위한 온톨로지 개발과 환경구현 (Development of a Design Ontology and Design Process Visualization Environment for the Analysis and Leaning of Conceptual Design)

  • 김성아
    • 한국실내디자인학회논문집
    • /
    • 제16권4호
    • /
    • pp.119-126
    • /
    • 2007
  • A prototype design process visualization and guidance system, is being developed. Its purpose is to visualize the design process in more intuitive manner so that one can get an insight to the complicated aspects of the design process. By providing a tangible utility to the design process performed by the expert designers or guided by the system, novice designers will be greatly helped to learn how to approach a certain class of design. Not only as an analysis tool to represent the characteristics of the design process, the system will be useful also for learning design process. A design ontology is being developed to provide the system with a knowledge-base, representing designer's activities associated with various design information during the conceptual design process, and then to be utilized for a computer environment for design analysis and guidance. To develop the design ontology, a conceptual framework of design activity model is proposed, and then the model has been tested and elaborated through investigating the nature of the early conceptual design. A design process representation model is conceptualized based on the ontology, and reflected into the development of the system. This paper presents the development process of the visualization system, modeling of design process ontology, and how the system could be utilized for the analysis and learning of conceptual design methods using computer mediated design support environment.

PIV 측정 및 수치해석을 이용한 구강암 수술에 따른 기도 형상 내 유동 특성 (Flow Characteristics in a Human Airway model for Oral Cancer Surgery by PIV Experiment and Numerical Simulation)

  • 홍현지;안세현;서희림;송재민;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.115-122
    • /
    • 2021
  • Oral cancer surgery typically consists of resection of lesion, neck dissection and reconstruction, and it has an impact on the position of hyoid bone. Therefore, morphological change of airway can occur since the geometric parameter of airway is correlated with the hyoid bone. Airflow is affected by geometry of the airway. In this study, flow characteristics were compared between pre- and post-surgery models by both particle image velocimetry (PIV) and numerical simulation. 3D model of upper airway was reconstructed based on CT data. Velocity is accelerated by the reduced channel area, and vortex and recirculation region are observed in pre- and post-surgery models. For the post-surgery model, high pressure distribution is developed by significantly decreased hydraulic diameter, and the longitudinal flow stream is also interrupted.

3D WALK-THROUGH ENVIRONMENTAL MODEL FOR VISUALIZATION OF INTERIOR CONSTRUCTION PROGRESS MONITORING

  • Seungjun Roh;Feniosky Pena-Mora
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.920-927
    • /
    • 2009
  • Many schedule delays and cost overruns in interior construction are caused by a lack of understanding in detailed and complicated interior works. To minimize these potential impacts in interior construction, a systematic approach for project managers to detect discrepancies at early stages and take corrective action through use of visualized data is required. This systematic implementation is still challenging: monitoring is time-consuming due to the significant amount of as-built data that needs to be collected and evaluated; and current interior construction progress reports have visual limitations in providing spatial context and in representing the complexities of interior components. To overcome these issues, this research focuses on visualization and computer vision techniques representing interior construction progress with photographs. The as-planned 3D models and as-built photographs are visualized in a 3D walk-through model. Within such an environment, the as-built interior construction elements are detected through computer vision techniques to automatically extract the progress data linked with Building Information Modeling (BIM). This allows a comparison between the as-planned model and as-built elements to be used for the representation of interior construction progress by superimposing over a 3D environment. This paper presents the process of representing and detecting interior construction components and the results for an ongoing construction project. This paper discusses implementation and future potential enhancement of these techniques in construction.

  • PDF

지형공간 정보를 이용한 감시장비 배치 최적화 실험 연구 (Experimental Research on the Optimal Surveillance Equipment Allocation Using Geo-spatial Information)

  • 이용웅;성창섭;양우석;임성빈;어양담
    • 한국군사과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2006
  • This study was focused on analyzing mathematical model for optimal allocation of surveillance equipment which is operated on the natural geographical condition, such as DMZ fence area. Optimal allocation algorithm was studied for the equipment to develop the whole surveillance and watch model for the two area as testing. Also 3D visualization program was developed to display and analyze the detecting effect. The results show that our suggested model will be available for enhancing security condition on the watching area.

혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석 (Numerical Study on Blood Flow Dynamics and Wall Mechanics in a Compliant Carotid Bifurcation Model)

  • 웬민투안;이상욱
    • 한국가시화정보학회지
    • /
    • 제13권2호
    • /
    • pp.28-32
    • /
    • 2015
  • Blood flow simulations in an realistic carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flow rates and pressure in carotid arteries were imposed for boundary conditions. Compared to a rigid wall model, we found an increased recirculation region at the carotid bulb and an overall reduction of wall shear stress in a compliant model. Additionally, there was appreciable change of flow rate and pressure wave in longitudinal direction. Both solid and wall shear stress concentration occur at the bifurcation apex.

GME 모델을 이용한 태풍 모의 (Typhoon Simulation with GME Model)

  • 오재호
    • 한국가시화정보학회지
    • /
    • 제5권2호
    • /
    • pp.9-13
    • /
    • 2007
  • Typhoon simulation based on dynamical forecasting results is demonstrated by utilizing geodesic model GME (operational global numerical weather prediction model of German Weather Service). It is based on uniform icosahedral-hexagonal grid. The GME gridpoint approach avoids the disadvantages of spectral technique as well as the pole problem in latitude-longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory parallel computers. In this study we made an attempt to simulate typhoon 'NARI' that passed over the Korean Peninsula in 2007. GME has attributes of numerical weather prediction model and its high resolution can provide details on fine scale. High resolution of GME can play key role in the study of severe weather phenomenon such as typhoons. Simulation of future typhoon that is assumed to occur under the global warming situation shows that the life time of that typhoon will last for a longer time and the intensity will be extremely stronger.

원형 디스크 주위 유동에 대한 RANS 유동해석 비교 연구 (Comparative study of flow over a circular disk using RANS turbulence models)

  • 유남규;김병재
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.88-93
    • /
    • 2021
  • For a flow normal to a circular disk, the flow separation occurs from the edge of the disk and the flow recirculation zone exists behind the disk. Many existing studies conducted simulations of flow normal to a circular disk under low Reynolds numbers. Some studies performed LES or DES simulations under high Reynolds numbers. However, comparative study for different RANS models for high Reynolds numbers is very limited. This study presents numerical simulations of a flow normal to a circular disk using Realizable k-ε model and SST k-ω model. The recirculation bubble length and drag coefficient were compared with the experimental data. The SST k-ω model showed the excellent predictions for the recirculation bubble length and drag coefficient.

기울어진 수조에 액적 충돌로 발생한 최대 공동 예측 모델 (Maximum cavity radius prediction model generated by drop impact in an inclined bath)

  • 이예완;김영도;김형수
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.83-89
    • /
    • 2019
  • In this study, we show the maximum cavity radius prediction model that a droplet impacts an inclined bath. Surface tensions, viscosities, inclination angles of a bottom substrate, droplet diameters, falling heights of the droplet are varied for the experiment. We experimentally observe that the cavity grows in hemispherical shape like the cavity formed in a deep bath although the depth of the bath is non-uniform due to an inclined bottom substrate. We derive two theoretical models to predict the experimental results of the fully developed cavity. Although each model has error, we observe that qualitatively theoretical model predicts the trend of experiment results well.

대형 풍력터빈 모형의 공력 성능 및 후류 유동장에 대한 비교 연구 (Comparison Study on Aerodynamic Performance and Wake Flow Field for a MW-Class Wind Turbine Model)

  • 정두원;원영수;강승희
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.32-38
    • /
    • 2019
  • A comparison study between computational-fluid-dynamics simulation and wind tunnel test for a megawatt-class wind turbine is conducted. For the study, flow-field in wake, basic aerodynamic performance, and effect of the yaw error for a 1/86 scaled-down model of the NREL offshore 5 MW wind turbine are numerically calculated using commercial software "FloEFD" with $k-{\varepsilon}$ turbulence model. The computed results are compared to the wind tunnel test performed by the constant-velocity mode for the model. It is shown that discrepancy are found between the two results at lower tip-speed ratio and higher yaw angle, however, the velocity-defection distribution in the wake, the torque coefficient at moderated and high tip-speed ratios are in good agreement with the wind tunnel test.