• Title/Summary/Keyword: Visual navigation

Search Result 280, Processing Time 0.024 seconds

REPRESENTATION OF NAVIGATION INFORMATION FOR VISUAL CAR NAVIGATION SYSTEM

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.508-511
    • /
    • 2007
  • Car navigation system is one of the most important applications in telematics. A newest trend of car navigation system is using real video captured by camera equipped on the vehicle, because video can overcome the semantic gap between map and real world. In this paper, we suggest a visual car navigation system that visually represents navigation information or route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid on it. Main services of the visual car navigation system are graphical turn guidance and lane change guidance. We suggest the system architecture that implements the services by integrating conventional route finding and guidance, computer vision functions, and augmented reality display functions. What we designed as a core part of the system is visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to a determination rule based on current location and driving circumstances. We briefly show the implementation of system.

  • PDF

Survey on Visual Navigation Technology for Unmanned Systems (무인 시스템의 자율 주행을 위한 영상기반 항법기술 동향)

  • Kim, Hyoun-Jin;Seo, Hoseong;Kim, Pyojin;Lee, Chung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • This paper surveys vision based autonomous navigation technologies for unmanned systems. Main branches of visual navigation technologies are visual servoing, visual odometry, and visual simultaneous localization and mapping (SLAM). Visual servoing provides velocity input which guides mobile system to desired pose. This input velocity is calculated from feature difference between desired image and acquired image. Visual odometry is the technology that estimates the relative pose between frames of consecutive image. This can improve the accuracy when compared with the exisiting dead-reckoning methods. Visual SLAM aims for constructing map of unknown environment and determining mobile system's location simultaneously, which is essential for operation of unmanned systems in unknown environments. The trend of visual navigation is grasped by examining foreign research cases related to visual navigation technology.

Representing Navigation Information on Real-time Video in Visual Car Navigation System

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.365-373
    • /
    • 2007
  • Car navigation system is a key application in geographic information system and telematics. A recent trend of car navigation system is using real video captured by camera equipped on the vehicle, because video has more representation power about real world than conventional map. In this paper, we suggest a visual car navigation system that visually represents route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid directly on the video. The system integrates real-time data acquisition, conventional route finding and guidance, computer vision, and augmented reality display. We also designed visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to current location and driving circumstances. We briefly show implementation of the system.

Visual Navigation by Neural Network Learning (신경망 학습에 의한 영상처리 네비게이션)

  • Shin, Suk-Young;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.263-266
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide line or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Visual Servo Navigation of a Mobile Robot Using Nonlinear Least Squares Optimization for Large Residual (비선형 최소 자승법을 이용한 이동 로봇의 비주얼 서보 네비게이션)

  • Kim, Gon-Woo;Nam, Kyung-Tae;Lee, Sang-Moo;Shon, Woong-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.327-333
    • /
    • 2007
  • We propose a navigation algorithm using image-based visual servoing utilizing a fixed camera. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the image error between the goal position and the position of a mobile robot. The residual function which is the image error between the position of a mobile robot and the goal position is generally large for this navigation problem. So, this navigation problem can be considered as the nonlinear least squares problem for the large residual case. For large residual, we propose a method to find the second-order term using the secant approximation method. The performance was evaluated using the simulation.

  • PDF

Loosely Coupled LiDAR-visual Mapping and Navigation of AMR in Logistic Environments (실내 물류 환경에서 라이다-카메라 약결합 기반 맵핑 및 위치인식과 네비게이션 방법)

  • Choi, Byunghee;Kang, Gyeongsu;Roh, Yejin;Cho, Younggun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.397-406
    • /
    • 2022
  • This paper presents an autonomous mobile robot (AMR) system and operation algorithms for logistic and factory facilities without magnet-lines installation. Unlike widely used AMR systems, we propose an EKF-based loosely coupled fusion of LiDAR measurements and visual markers. Our method first constructs occupancy grid and visual marker map in the mapping process and utilizes prebuilt maps for precise localization. Also, we developed a waypoint-based navigation pipeline for robust autonomous operation in unconstrained environments. The proposed system estimates the robot pose using by updating the state with the fusion of visual marker and LiDAR measurements. Finally, we tested the proposed method in indoor environments and existing factory facilities for evaluation. In experimental results, this paper represents the performance of our system compared to the well-known LiDAR-based localization and navigation system.

Performance Evaluation of a Compressed-State Constraint Kalman Filter for a Visual/Inertial/GNSS Navigation System

  • Yu Dam Lee;Taek Geun Lee;Hyung Keun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Autonomous driving systems are likely to be operated in various complex environments. However, the well-known integrated Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), which is currently the major source for absolute position information, still has difficulties in accurate positioning in harsh signal environments such as urban canyons. To overcome these difficulties, integrated Visual/Inertial/GNSS (VIG) navigation systems have been extensively studied in various areas. Recently, a Compressed-State Constraint Kalman Filter (CSCKF)-based VIG navigation system (CSCKF-VIG) using a monocular camera, an Inertial Measurement Unit (IMU), and GNSS receivers has been studied with the aim of providing robust and accurate position information in urban areas. For this new filter-based navigation system, on the basis of time-propagation measurement fusion theory, unnecessary camera states are not required in the system state. This paper presents a performance evaluation of the CSCKF-VIG system compared to other conventional navigation systems. First, the CSCKF-VIG is introduced in detail compared to the well-known Multi-State Constraint Kalman Filter (MSCKF). The CSCKF-VIG system is then evaluated by a field experiment in different GNSS availability situations. The results show that accuracy is improved in the GNSS-degraded environment compared to that of the conventional systems.

Integrated Navigation Algorithm using Velocity Incremental Vector Approach with ORB-SLAM and Inertial Measurement (속도증분벡터를 활용한 ORB-SLAM 및 관성항법 결합 알고리즘 연구)

  • Kim, Yeonjo;Son, Hyunjin;Lee, Young Jae;Sung, Sangkyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.189-198
    • /
    • 2019
  • In recent years, visual-inertial odometry(VIO) algorithms have been extensively studied for the indoor/urban environments because it is more robust to dynamic scenes and environment changes. In this paper, we propose loosely coupled(LC) VIO algorithm that utilizes the velocity vectors from both visual odometry(VO) and inertial measurement unit(IMU) as a filter measurement of Extended Kalman filter. Our approach improves the estimation performance of a filter without adding extra sensors while maintaining simple integration framework, which treats VO as a black box. For the VO algorithm, we employed a fundamental part of the ORB-SLAM, which uses ORB features. We performed an outdoor experiment using an RGB-D camera to evaluate the accuracy of the presented algorithm. Also, we evaluated our algorithm with the public dataset to compare with other visual navigation systems.

Effects of Visual Organizer for supporting Web-based Instruction (웹 기반 학습 프로그램을 지원하는 시각적 조직자(Visual Organizer) 전략의 효과)

  • Han, Ahn-Na
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.281-292
    • /
    • 2008
  • The purpose of this study is to implement a visual organizer which enables learners to support web navigation as well as visual understandings in the electronic document space. I developed a visual organizer according to design principles of visual organizer, and then analysed the effect of a visual organizer on the students' disorientation, perceived usefulness, perceived usability, satisfaction and use intention. According to the result, using the visual organizer was more effect than conventional web-based instruction in view of navigation and visual understandings.