• Title/Summary/Keyword: Visual imaging

Search Result 629, Processing Time 0.03 seconds

Searching for Dwarf Galaxies in Deep Images of NGC 1291 obtained with KMTNet

  • Byun, Woowon;Kim, Minjin;Sheen, Yun-Kyeong;Park, Hong Soo;Ho, Luis C.;Lee, Joon Hyeop;Jeong, Hyunjin;Kim, Sang Chul;Park, Byeong-Gon;Seon, Kwang-Il;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.38.3-38.3
    • /
    • 2019
  • We present newly discovered dwarf galaxy candidates in deep wide-field images of NGC 1291 obtained with KMTNet. We identify 15 dwarf galaxy candidates by visual inspection within the virial radius of NGC 1291. Using imaging simulations, we demonstrate that our imaging data is complete up to 26 mag arcsec-2 or -10 abs.mag with > 70% of the completeness rate. We also apply automated detection method to find the dwarfs. However, the completeness and the reliability are relatively low compared to the visual inspection. We find that structural and photometric properties of dwarf candidates such as effective radius, central surface brightness, Sérsic index, and absolute magnitude appear to be consistent with those of known dwarf galaxies in nearby groups and clusters, except for color. NGC 1291, residing in a relatively isolated environment, tends to accompany bluer dwarf galaxies (≃0.58) than those in denser environment. It shows that the quenching of dwarfs is susceptible to the environment.

  • PDF

f-MRI with Three-Dimensional Visual Stimulation (삼차원 시각 자극을 이용한 f-MRI 연구)

  • Kim C.Y.;Park H.J.;Oh S.J.;Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Purpose : Instead of conventional two-dimensional (2-D) visual stimuli, three-dimensional (3-D) visual stimuli with stereoscopic vision were employed for the study of functional Magnetic Resonance Imaging (f-MRI). In this paper f-MRI with 3-D visual stimuli is investigated in comparison with f-MRI with 2-D visual stimuli. Materials and Methods : The anaglyph which generates stereoscopic vision by viewing color coded images with red-blue glasses is used for 3-D visual stimuli. Two-dimensional visual stimuli are also used for comparison. For healthy volunteers, f-MRI experiments were performed with 2-D and 3-D visual stimuli at 3.0 Tesla MRI system. Results : Occipital lobes were activated by the 3-D visual stimuli similarly as in the f-MRI with the conventional 2-D visual stimuli. The activated regions by the 3-D visual stimuli were, however, larger than those by the 2-D visual stimuli by $18\%$. Conclusion : Stereoscopic vision is the basis of the three-dimensional human perception. In this paper 3-D visual stimuli were applied using the anaglyph. Functional MRI was performed with 2-D and 3-D visual stimuli at 3.0 Tesla whole body MRI system. The occipital lobes activated by the 3-D visual stimuli appeared larger than those by the 2-D visual stimuli by about $18\%$. This is due to the more complex character of the 3-D human vision compared to 2-D vision. The f-MRI with 3-D visual stimuli may be useful in various fields using 3-D human vision such as virtual reality, 3-D display, and 3-D multimedia contents.

  • PDF

Auto-Positioning of Patient in X-ray Diagnostic Imaging (진단 엑스선 영상에서 환자 위치잡이의 자동화)

  • Yang, Won Seok;Son, Jung Min;Kwon, Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • As interest in artificial intelligence has increased, artificial intelligence has been actively studied in the medical field. In Korea, artificial intelligence has been applied to medical imaging devices such as X-ray imaging, Computer Tomography and Magnetic Resonance Imaging and artificial intelligence capable of acquiring radiation images of patients without radiologists in the future Medical devices are expected to be invented. This study was an initial study on the automation of patient positioning in X - ray imaging. We used x-ray equipment and human phantoms to evaluate the positioning. The program used Visual Studio 2010 MFC and the image was in the size $1450{\times}1814$. The pixel values were converted to contrasts with values of 0 to 255 that can be visually recognized and output to the monitor. We developed a procedure algorithm program that predicts the angle of the output image through three pixel coordinate values and induces the patient to perform correct positioning according to the voice guidance according to the angle. In the next study, we will study the artificial intelligence to grasp the structure itself and calculate the angle, rather than conveying the reference of coordinates to artificial intelligence. In the future, it is expected that it will be helpful in the study of artificial intelligence from shooting to positioning through the automation of positioning.

Viewing Angle-Improved 3D Integral Imaging Display with Eye Tracking Sensor

  • Hong, Seokmin;Shin, Donghak;Lee, Joon-Jae;Lee, Byung-Gook
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.208-214
    • /
    • 2014
  • In this paper, in order to solve the problems of a narrow viewing angle and the flip effect in a three-dimensional (3D) integral imaging display, we propose an improved system by using an eye tracking method based on the Kinect sensor. In the proposed method, we introduce two types of calibration processes. First process is to perform the calibration between two cameras within Kinect sensor to collect specific 3D information. Second process is to use a space calibration for the coordinate conversion between the Kinect sensor and the coordinate system of the display panel. Our calibration processes can provide the improved performance of estimation for 3D position of the observer's eyes and generate elemental images in real-time speed based on the estimated position. To show the usefulness of the proposed method, we implement an integral imaging display system using the eye tracking process based on our calibration processes and carry out the preliminary experiments by measuring the viewing angle and flipping effect for the reconstructed 3D images. The experimental results reveal that the proposed method extended the viewing angles and removed the flipping images compared with the conventional system.

Visual Quality Enhancement of Three-Dimensional Integral Imaging Reconstruction for Partially Occluded Objects Using Exemplar-Based Image Restoration

  • Zhang, Miao;Zhong, Zhaolong;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • In generally, the resolution of reconstructed three-dimensional images can be seriously degraded by undesired occlusions in the integral imaging system, because the undesired information of the occlusion overlap the three-dimensional images to be reconstructed. To solve the problem of the undesired occlusion, we present an exemplar-based image restoration method in integral imaging system. In the proposed method, a minimum spanning tree-based stereo matching method is used to remove the region of undesired occlusions in each elemental image. After that, the removed occlusion region of each elemental images are re-established by using the exemplar-based image restoration method. For further improve the performance of the image restoration, the structure tensor is used to solve the filling error cause by discontinuous structures. Finally, the resolution enhanced three-dimensional images are reconstructed by using the restored elemental images. The preliminary experiments are presented to demonstrate the feasibility of the proposed method.

Development of Small System for Mobile-Based Visible/NIR Animal Imaging (실험동물용 가시광선/근적외선 생체 이미징 소형 장비의 개발)

  • Eum, Nyeon-Sik;Park, Hee-Joon;Jung, Jin-Yong;Han, Jung-Hyun;Kim, Hyung-Kyung;Jang, Eun-Yoon;Lee, Suck-Jae;Kang, Byoung-Ho;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.270-275
    • /
    • 2012
  • In this study, we have developed a mobile-based visible/NIR(Near InfraRed) imaging equipment for the animal testing. This equipment can provide visible, NIR and merged image through the viewer program. Especially, merged image help researcher to understand visual messages at animal in-vivo test. Also, it is available to send real-time images through the smart phone. Researcher can communicate with another researcher who is a long distance away. Also, the equipment was made with portable small size to enable it to commercialize.

HVS-Aware Single-Shot HDR Imaging Using Deep Convolutional Neural Network (시각 인지 특성과 딥 컨볼루션 뉴럴 네트워크를 이용한 단일 영상 기반 HDR 영상 취득)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.369-382
    • /
    • 2018
  • We propose a single-shot high dynamic range (HDR) imaging algorithm using a deep convolutional neural network (CNN) for row-wise varying exposures in a single image. The proposed algorithm restores missing information resulting from under- and/or over-exposed pixels in an input image and reconstructs the raw radiance map. The main contribution of this work is the development of a loss function for the CNN employing the human visual system (HVS) properties. Then, the HDR image is obtained by applying a demosaicing algorithm. Experimental results demonstrate that the proposed algorithm provides higher-quality HDR images than conventional algorithms.

Internal Quality Evaluation and Age Identification of Fresh Korean Ginseng using Magnetic Resonance Imaging (자기공명영상을 이용한 수삼의 내부 품질평가 및 연근판정)

  • 임종국;김철수;이승조;김성민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The purpose of this study is to characterize the internal physical properties of fresh Korean ginsengs (Panax ginseng C.A. Meyer) through a magnetic resonance imaging (MRI) technique. Current external visual inspection cannot determine internal quality of ginsengs successfully. Relaxation time constants, T$_1$ and T$_2$*, were obtained from a series of MR images. Calculated Ti values were varied with different physiological states of ginseng tissues. Internal imaging information was obtained nondestructively from fresh ginsengs. One- and two-dimensional image analyses were performed. One-dimensional image analysis showed a potential of age identification of ginsengs rapidly. Internal quality of normal and abnormal ginsengs was evaluated using two-dimensional MR images. Various types of internal defects such as internal cavity and rotten spot were visualized clearly. The MRI technique had a feasibility to detect internal defects of fresh ginsengs effectively.

Multispectral X-ray imaging to distinguish among dental materials

  • Peter, Ann-Christin;Schnaubelt, Matthias;Gente, Michael
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.247-254
    • /
    • 2017
  • Purpose: Dual-energy X-ray imaging is widely used today in various areas of medicine and in other applications. However, no similar technique exists for dental applications. In this study, we propose a dual-energy technique for dental diagnoses based on voltage-switching. Materials and Methods: The method presented in this study allowed different groups of materials to be classified based on atomic number, thereby enabling two-dimensional images to be colorized. Computer simulations showed the feasibility of this approach. Using a number of different samples with typical biologic and synthetic dental materials, the technique was applied to radiographs acquired with a commercially available dental X-ray unit. Results: This technique provided a novel visual representation of the intraoral environment in three colors, and is of diagnostic value when compared to state-of-the-art grayscale images, since the oral cavity often contains multiple permanent foreign materials. Conclusion: This work developed a technique for two-dimensional dual-energy imaging in the context of dental applications and showed its feasibility with a commercial dental X-ray unit in simulation and experimental studies.

Automatic Multileaf Collimation Quality Assurance for IMRT using Electronic Portal Imaging

  • Jin, Ho-Sang;Jason W. Sohn;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.305-308
    • /
    • 2002
  • More complex radiotherapy techniques using multi leaf collimation(MLC) such as intensity-modulated radiation therapy(IMRT) has been increasing the significance of verification of leaf position and motion. Due to the reliability and robustness, quality assurance(QA) of MLC is usually performed with portal films. However, the advantage of ease of use and capability of providing digital data of electronic portal imaging devices(EPIDs) have attracted many attentions as alternatives of films for routine quality assurance in spite of the concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In our work, the method of routine QA of MLC using electronic portal imaging(EPI) was developed. The verification of availability of EPI images for routine QA was performed by comparison with those of the portal films which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed test patterns of dynamic MLC were applied to image acquisition. Quantitative off-line analysis using edge detection algorithm enhanced the verification procedure in addition to on-line qualitative visual assessment. In conclusion, the EPI is available enough for routine QA with the accuracy of portal films.

  • PDF