• Title/Summary/Keyword: Visual imaging

Search Result 618, Processing Time 0.051 seconds

Visual Servoing System Based on Space Variant Imaging for Rehabilitation Robots (공간 변화 영상을 이용한 재활로봇의 비쥬얼 서보잉 시스템에 관한 연구)

  • 송원경;이희영;변증남
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.763-768
    • /
    • 1999
  • The space variant imaging system which mimics the human beings visual system has some merits such as wide field-of-view, the low computational cost and the high accuracy in matching of correspondence points of stereo images. In this presentation, a visual servoing system based on the space variant imaging technique is proposed for the control of the rehabilitation robot arm. The position information of an object obtained by space variant imaging techniques is used for the visual servoing. According to the empirical data, the degree of correlation extracted by the space variant imaging technique is more accurate than that of the space invariant imaging technique.

  • PDF

Construction of Visual Algorithms for the Visual System Analysis of Virtual Reality HMD Devices -Through Interactive Visual System Analysis that Appears in Media Art- (가상현실 HMD기기의 시각체계 분석을 위한 시각 알고리즘 구축 -미디어 아트에서 나타나는 인터렉티브형 시각체계 분석을 통해-)

  • Lim, Sang Guk
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.721-727
    • /
    • 2020
  • The change in 21st century imaging media technology is changing our modern visual system. Virtual reality HMD devices, one of the core technologies of 5G, reproduce the new visual system. However, there is a lack of analysis and understanding of the visual operating system to understand the visual system of the fast-changing variety of imaging media. This study analyzed the three visual systems appearing in the recent imaging media art area and presented an engineering perspective algorithm for its procedures and methods. Through these results, we want to build algorithms that understand the visual system of virtual reality HMD devices.

EEG Current Source Imaging using VEP Data Recorded inside a 3.0T MRI Magnet

  • Han Jae Y.;Choi Young H.;Im Chang H.;Kim Tae-S.;Lee Soo Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • We have performed EEG current source imaging on the cortical surface using visual evoked potentials (VEPs) recorded inside a 3.0 T MRI magnet. In order to remove ballistocardiogram (BCG) artifacts in the VEPs, an improved BCG template subtraction technique is devised. Using the cortically constrained current source imaging technique and pattern-reversal visual stimulations, we have obtained current source maps from 10 subjects. To validate the EEG current source imaging inside the magnet, we have compared the current source maps to the ones obtained outside the magnet. The experimental results demonstrate that there is a strong correspondence between the current source maps, proving that current source imaging is feasible with the evoked potentials recorded inside a 3.0 T MRI magnet.

NMR Functional brain Imaging with the Tailored RF Pulse (TAILORED RF PULSE를 이용한 NMR에서의 뇌 기능 영상법)

  • Ro, Y.M.;Cho, Z.H.;Mennon, R.S.;Ugurbil, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.21-24
    • /
    • 1993
  • The experimental results of visual stimulation with the tailored RF pulse are reported. Tailored RF pulse is used for the susceptibility effect imaging. Around 25% signal change of visual cortex area is detected during photic stimulation. Interestingly, with the tailored RF pulse, the signal intensity of visual cortex is deceased during photic stimulation. It is, however, increased with normal $T_2$ weighted imaging. The comparison between normal $T_2$ weighted imaging and the tailored RF pulse imaging are performed with 4T NMR system and the results with human volunteer are also presented.

  • PDF

Three-Dimensional Photon Counting Imaging with Enhanced Visual Quality

  • Lee, Jaehoon;Lee, Min-Chul;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.180-187
    • /
    • 2021
  • In this paper, we present a computational volumetric reconstruction method for three-dimensional (3D) photon counting imaging with enhanced visual quality when low-resolution elemental images are used under photon-starved conditions. In conventional photon counting imaging with low-resolution elemental images, it may be difficult to estimate the 3D scene correctly because of a lack of scene information. In addition, the reconstructed 3D images may be blurred because volumetric computational reconstruction has an averaging effect. In contrast, with our method, the pixels of the elemental image rearrangement technique and a Bayesian approach are used as the reconstruction and estimation methods, respectively. Therefore, our method can enhance the visual quality and estimation accuracy of the reconstructed 3D images because it does not have an averaging effect and uses prior information about the 3D scene. To validate our technique, we performed optical experiments and demonstrated the reconstruction results.

Breast Imaging Using Electrical Impedance Tomography: Correlation of Quantitative Assessment with Visual Interpretation

  • Zain, Norhayati Mohd;Chelliah, Kanaga Kumari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1327-1331
    • /
    • 2014
  • Background: Electrical impedance tomography (EIT) is a new non-invasive, mobile screening method which does not use ionizing radiation to the human breast; allows conducting quantitative assessment of the images besides the visual interpretation. The aim of this study was to correlate the quantitative assessment and visual interpretation of breast electrical impedance tomographs and associated factors. Materials and Methods: One hundred and fifty mammography patients above 40 years and undergoing EIT were chosen using convenient sampling. Visual interpretation of the images was carried out by a radiologist with minimum of three years experience using the breast imaging - electrical impedance (BI-EIM) classification for detection of abnormalities. A set of thirty blinded EIT images were reinterpreted to determine the intra-rater reliability using kappa. Quantitative assessment was by comparison of the breast average electric conductivity with the norm and correlations with visual interpretation of the images were determined using Chi-square. One-way ANOVA was used to compare the mean electrical conductivity between groups and t-test was used for comparisons with pre-existing Caucasians statistics. Independent t-tests were applied to compare the mean electrical conductivity of women with factors like exogenous hormone use and family history of breast cancer. Results: The mean electrical conductivity of Malaysian women was significantly lower than that of Caucasians (p<0.05). Quantitative assessment of electrical impedance tomography was significantly related with visual interpretation of images of the breast (p<0.05). Conclusions: Quantitative assessment of electrical impedance tomography images was significantly related with visual interpretation.

The effects of two different visual feedback exercise tools based on rehabilitative ultrasound imaging in the elderly

  • Shin, Jang-Hoon;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.4
    • /
    • pp.287-294
    • /
    • 2020
  • Objective: This study aimed to investigate the effects of an ultrasound-based bar graph proportional to the quadriceps muscle thickness as a real-time visual feedback training tool in the elderly. Design: Cross-sectional study. Methods: Twenty-four elderly persons participated in this study and were randomly divided into three groups: oral training group (n=8, group 1), ultrasound imaging group (n=8, group 2), and graph group (n=8, group 3). In the pre condition, all participants performed maximal voluntary isometric contraction (MVIC) of the quadriceps with knee extension three times with oral training. In the post condition, group 1 performed MVIC of the quadriceps with oral training, group 2 performed MVIC of the quadriceps with real-time visual feedback using ultrasound imaging, and group 3 performed MVIC of the quadriceps with real-time visual feedback using a bar graph proportional to the quadriceps muscle thickness, three times for all groups. Muscle thickness, activity (mean, peak), tone, stiffness, logarithmic decrement, relaxation, and creep were measured in both conditions in all participants. Results: Visual feedback with a bar graph showed significant effects on muscle thickness, mean muscle activity, and peak muscle activity compared with oral training and visual feedback with ultrasound imaging (p<0.05). Conclusions: Isometric training of the quadriceps with real-time visual feedback using a bar graph proportional to the quadriceps muscle thickness may be more effective than other methods in improving muscle thickness and muscle activity. This study presented a tool that can help increase muscle thickness in the elderly.

Live Electrooptic Imaging Camera for Real-Time Visual Accesses to Electric Waves in GHz Range

  • Tsuchiya, Masahiro;Shiozawa, Takahiro
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.290-297
    • /
    • 2011
  • Recent progresses in the live electrooptic imaging (LEI) technique are reviewed with emphasis on its functionality of real-time visual accesses to traveling electric waves in the GHz range. Together with the principles, configurations, and procedures for the visual observation experiments by an LEI camera system, the following results are described as examples indicating the wide application ranges of the technique; Ku-band waves on arrayed planar antennas, waves on a Gb/s-class digital circuit, W-band waves traveling both in slab-waveguide modes and aerially, backward-traveling wave along composite right/left-handed transmission line, and, waves in monolithic microwave integrated circuit module case.