• 제목/요약/키워드: Visual Tracking System

Search Result 211, Processing Time 0.028 seconds

The development of a visual tracking algorithm for the stable grasping of a moving object (움직이는 물체의 안정한 파지를 위한 시각추적 알고리즘 개발)

  • Cha, In-Hyuk;Sun, Yeong-Gab;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 1998
  • This paper proposes an advanced visual tracking algorithm for the stable grasping of a moving target(2D). This algorithm is programmed to find grasping points of an unknown polygonal object and execute visual tracking. The Kalman Filter(KF) algorithm based on the SVD(Singular Value Decomposition) is applied to the visual tracking system for the tracking of a moving object. The KF based on the SVD improves the accuracy of the tracking and the robustness in the estimation of state variables and noise statistics. In addition, it does not have the numerical unstability problem that can occur in the visual tracking system based on Kalman filter. In the grasping system, a parameterized family is constructcd, and through the family, the grasping system finds the stable grasping points of an unknown object through the geometric properties of the parameterized family. In the previous studies, many researchers have been studied on only 'How to track a moving target'. This paper concern not only on 'how to track' but also 'how to grasp' and apply the grasping theory to a visual tracking system.

  • PDF

Real-time Visual Tracking System and Control Method for Laparoscope Manipulator (복강경 수술용 도구의 실시간 영상 추적 및 복강경 조종기의 지능형 제어 방법)

  • 김민석;허진석;이정주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.83-90
    • /
    • 2004
  • In this paper we present a new real-time visual servoing unit for laparoscopic surgery This unit can automatically control laparoscope manipulator through visual tracking of laparoscopic surgical tool. For the tracking, we present two-stage adaptive CONDENSATION(conditional density propagation) algorithm to extract the accurate position of the surgical tool tip from a surgical image sequence in real-time. This algorithm can be adaptable to abrupt change of laparoscope illumination. For the control, we present virtual damper system to control a laparoscope manipulator safely and stably. This system causes the laparoscope to move under constraint of the virtual dampers which are linked to the four sides of image. The visual servoing unit operates the manipulator in real-time with locating the surgical tool in the center of image. The experimental results show that the proposed visual tracking algorithm is highly robust and the controlled manipulator can present stable view with safe.

The development of a visual tracking system for the stable grasping of a moving object (움직이는 물체의 안정한 Grasping을 위한 시각추적 시스템 개발)

  • 차인혁;손영갑;한창수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.543-546
    • /
    • 1996
  • We propose a new visual tracking system for grasping which can find grasping points of an unknown polygonal object. We construct the system with the image prediction technique and Extended Kalman Filter algorithm. The Extended Kalman Filter(EKF) based on the SVD can improve the accuracy and processing time for the estimation of the nonlinear state variables. By using it, we can solve the numerical unstability problem that can occur in the visual tracking system based on Kalman filter. The image prediction algorithm can reduce the effect of noise and the image processing time. In the processing of a visual tracking, we can construct the parameterized family and can found the grasping points of unknown object through the geometric properties of the parameterized family.

  • PDF

DRIVING CONTROLOF A VISUAL SYSTEM

  • Sugisaka, Masanori;Hara, Masayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.131-134
    • /
    • 1995
  • We developed a visual system that is able to track the moving objects within a certain range of errors. The visual system is driven by two DC servo motors that are controlled by a computer based on the visual data obtained from a CCD video camera. The software to track the moving objects is developed based on the PWM of the DC motors. Also, the problems how to implement a fuzzy logic control method and a neural network in this system, are also considered in order to check the control performance of tracking. The fuzzy logic algorithm is a powerful control technique for nonlinear dynamical system and also the neural network could be implemented in this system. In this paper, we present configuration of tracking system developed in our laboratory, the control methods of the visual system and the experimental results are shown.

  • PDF

Robust Visual Tracking for 3-D Moving Object using Kalman Filter (칼만필터를 이용한 3-D 이동물체의 강건한 시각추적)

  • 조지승;정병묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

Real-time Target Tracking System by Extended Kalman Filter (확장칼만필터를 이용한 실시간 표적추적)

  • 임양남;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.175-181
    • /
    • 1998
  • This paper describes realtime visual tracking system of moving object for three dimensional target using EKF(Extended Kalman Filter). We present a new realtime visual tracking using EKF algorithm and image prediction algorithm. We demonstrate the performance of these tracking algorithm through real experiment. The experimental results show the effectiveness of the EKF algorithm and image prediction algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image.

  • PDF

Voting based Cue Integration for Visual Servoing

  • Cho, Che-Seung;Chung, Byeong-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.798-802
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper, the robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is to use different models (CAD model etc.) known a priori. Also fusion of multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Because voting is a very simple or no model is needed for fusion, voting-based fusion of cues is applied. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters, namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

An Advanced Visual Tracking and Stable Grasping Algorithm for a Moving Object (시각센서를 이용한 움직이는 물체의 추적 및 안정된 파지를 위한 알고리즘의 개발)

  • 차인혁;손영갑;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.175-182
    • /
    • 1998
  • An advanced visual tracking and stable grasping algorithm for a moving object is proposed. The stable grasping points for a moving 2D polygonal object are obtained through the visual tracking system with the Kalman filter and image prediction technique. The accuracy and efficiency are improved more than any other prediction algorithms for the tracking of an object. In the processing of a visual tracking. the shape predictors construct the parameterized family and grasp planner find the grasping points of unknown object through the geometric properties of the parameterized family. This algorithm conducts a process of ‘stable grasping and real time tracking’.

  • PDF

Robust 3D visual tracking for moving object using pan/tilt stereo cameras (Pan/Tilt스테레오 카메라를 이용한 이동 물체의 강건한 시각추적)

  • Cho, Che-Seung;Chung, Byeong-Mook;Choi, In-Su;Nho, Sang-Hyun;Lim, Yoon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.77-84
    • /
    • 2005
  • In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.