• Title/Summary/Keyword: Visual Stimulus

Search Result 281, Processing Time 0.029 seconds

The Visual Evaluation of Face Image according to Color Coordination of Makeup (메이크업의 컬러코디네이션에 따른 얼굴이미지의 시각적 평가)

  • Jeong, Su-Jin;Kang, Kyung-Ja
    • Korean Journal of Human Ecology
    • /
    • v.15 no.4
    • /
    • pp.611-622
    • /
    • 2006
  • The purpose of this study is to investigate the effect of eyeshadow color (brown, purple, and blue), lipstick color (red, orange, and purple), and lipstick tone(vivid, light, dull, and dark) on the makeup image. The experimental materials used for this study were sets of stimulus and response scales (7 point semantic). The stimuli were 36 color pictures manipulated with the combination of eyeshadow color, lipstick color, and lipstick tone using computer simulation. The subjects were 216 female undergraduates living in Jinju city. The data was analyzed by using SPSS program. Analyzing methods were ANOVA and Duncan test. The result of this study are as follows. Image factor of the stimulus was composed of 4 different components (attractiveness and gracefulness, visibility, cuteness, and softness), Among them, the attractiveness and gracefulness and the visibility were important. Each dimensional image was affected by color coordination of eyeshadow color, lipstick color and lipstick tone. Therefore, the face image through matching eyeshadow and lipstick could be varied by the eyeshadow color, lipstick color and tones.

  • PDF

Literature Review of Robots Used for the Rehabilitation of Children with Autistic Spectrum Disorder (자폐스펙트럼장애 아동의 재활을 위한 로봇 관련 문헌분석)

  • Choi, E.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • Children with autistic spectrum disorder(ASD) have a strength in visual process and systemizing, and they show interest toward things and machines. Therefore, robots have been suggested as a useful tool for the rehabilitation of the children with ASD. A robot can attract children's interest and attention, and it can provide simplified social stimulus. A robot can be applied repetitively, and programmed for the special needs of an individual child. In this study, we review literature related to the use of robots for the rehabilitation of children with ASD. For this purpose, related literature was searched with the keywords of autism and robot. We selected eleven domestic papers, and analyzed their contents to identify robots, stimulus of robots, experiment process and dependent variables.

  • PDF

Implementation of the Perception Process in Human‐Vehicle Interactive Models(HVIMs) Considering the Effects of Auditory Peripheral Cues (청각 주변 자극의 효과를 고려한 효율적 차량-운전자 상호 연동 모델 구현 방법론)

  • Rah, Chong-Kwan;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • HVIMs consists of simulated driver models implemented with series of mathematical functions and computerized vehicle dynamic models. To effectively model the perception process, as a part of driver models, psychophysical nonlinearity should be considered not only for the single-modal stimulus but for the stimulus of multiple modalities and interactions among them. A series of human factors experiments were conducted using the primary sensory of visual and auditory modalities to find out the effects of auditory cues in visual velocity estimation tasks. The variations of auditory cues were found to enhance/reduce the perceived intensity of velocity as the level changed. These results indicate that the conventional psychophysical power functions could not applied for the perception process of the HVIMs with multi-modal stimuli. 'Ruled surfaces' in a 3-D coordinate system(with the intensities of both kinds of stimuli and the ratio of enhancement, respectively for each coordinate) were suggested to model the realistic perception process of multi-modal HVIMs.

Reconstruction of Receptive Field of Retinal Ganglion Cell Using Matlab (Matlab을 이용한 망막신경절세포 감수야 구성)

  • Ye, Jang-Hee;Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • A retinal ganglion cell's receptive field is defined as that region on the retinal surface In which a light stimulus will produce a response. A retinal ganglion cell peers out at a small patch of the visual scene through its receptive field and encodes local features with action potentials that pass through the optic nerve to higher centers. Therefore, defining the receptive field of a retinal ganglion cell is essential to understand the electrical characteristics of a ganglion cell. Distribution of receptive fields over retinal surface provides us an Insight how the retinal ganglion cell processes the visual scene. In this paper, we provide the details how to reconstruct the receptive field of a retinal ganglion cell. We recorded the ganglion cell's action potential with multielectrode array when the random checkerboard stimulus was applied. After classifying the retinal waveform Into ON-cell, OFF-cell, ON/OFF-cell, we reconstructed the receptive field of retinal ganglion cell with Matlab. Here, we show the receptive fields of ON-cell and OFF-cell.

  • PDF

Study on Vehicle Haptic-Seat for the Driving Information Transfer to Driver for the Elderly (고령운전자 운전정보전달을 위한 차량용 햅틱시트 연구)

  • Oh, S.Y.;Kim, K.T.;Yu, C.H.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.151-160
    • /
    • 2014
  • In this study, the effect of the automotive haptic-seat technology which can transmit the driving information by the vibro-stimulus from the seat was investigated to overcome previous system's limitation relied on the visual and audial method and to help handicap driving. A prototype haptic seat cover with 30 coin-type motors and driver module were developed for this sake. In an experiment of seat vibration stimulation being performed under virtual driving situation by targeting the elderly aged over 65 years old, average score of test subjects for total vibration recognition was 3.5/4 points and recognition rate of 87.5% was represented. In addition, a result that all the test subjects totally recognized overspeed warning signal of 4 times was represented. As a result of statistical analysis for vibration recognition score by each group depending on TMT score, a significant difference was not found and a result that tactile function of which vibration is recognized even by the aged whose visual, perceptional function is declined showed an equal ability was obtained.. In this study it was shown that the seat vibration stimulus could be used to transfer the old drivers' information while driving.

  • PDF

Accurate Representation of Light-intensity Information by the Neural Activities of Independently Firing Retinal Ganglion Cells

  • Ryu, Sang-Baek;Ye, Jang-Hee;Kim, Chi-Hyun;Goo, Yong-Sook;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2009
  • For successful restoration of visual function by a visual neural prosthesis such as retinal implant, electrical stimulation should evoke neural responses so that the informat.ion on visual input is properly represented. A stimulation strategy, which means a method for generating stimulation waveforms based on visual input, should be developed for this purpose. We proposed to use the decoding of visual input from retinal ganglion cell (RGC) responses for the evaluation of stimulus encoding strategy. This is based on the assumption that reliable encoding of visual information in RGC responses is required to enable successful visual perception. The main purpose of this study was to determine the influence of inter-dependence among stimulated RGCs activities on decoding accuracy. Light intensity variations were decoded from multiunit RGC spike trains using an optimal linear filter. More accurate decoding was possible when different types of RGCs were used together as input. Decoding accuracy was enhanced with independently firing RGCs compared to synchronously firing RGCs. This implies that stimulation of independently-firing RGCs and RGCs of different types may be beneficial for visual function restoration by retinal prosthesis.

Comparison between Affective Responses to Tactile Stimuli Based on the Presence of Visual Information Presentation (시각 정보 제시 여부에 따른 촉각 자극에 대한 정서 반응 비교)

  • Jisu Kim;Chaery Park;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.2
    • /
    • pp.15-24
    • /
    • 2024
  • Previous studies on texture and emotion have focused on identifying precisely which tactile stimuli trigger specific emotions. Despite the significant role of vision in tactile perception, research has so far only focused on the singular aspect of texture. In this study, we used tactile stimuli to investigate the effects of three variables-roughness, hardness, and visual blocking-on the affective responses to tactile perception. The experimental stimuli that can be encountered in daily life were selected based on the four conditions of "rough/hard," "rough/soft," "smooth/hard" and "smooth/soft" by crossing two roughness conditions (rough, smooth) and two hardness conditions (hard, soft). The experiment was divided into two sessions depending on whether or not visual blocking existed. Participants completed a session in which they evaluated a tactile stimulus after touching it without seeing it and then proceeded with a session in which they evaluated a stimulus after touching it with sight of it. The results of the repeated-measures ANOVA showed that individuals reported a more positive perception when touching stimuli with visual cues and more negative when touching stimuli without visual cues. Furthermore, the inclination to perceive smooth and soft stimuli more positively and rough stimuli more negatively was stronger when touching without visual cues. The results of this study suggest implications for enhancing the understanding of the interaction between emotion and visual information processing by elucidating how emotions are experienced differently in situations where visual information is provided and where it is not.

Correlation between Real-Time and Off-Time Subjective Assessments and Physiological Responses for Visual Picture Stimulus (시각자극에 대한 실시간 및 비 실시간 주관적 평가와 생리반응과의 상관관계)

  • Jeong, Sun-Cheol;Min, Byeong-Chan;Min, Byeong-Un;Kim, Sang-Gyun;O, Ji-Yeong;Kim, Yu-Na;Kim, Cheol-Jung;Park, Se-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.27-39
    • /
    • 1999
  • The purpose of this study was to approve the capability of human sensibility evaluation based on physiological responses and real-time subjective assessments. Three well-trained healthy human subjects were participated in the experiments. We measured physiological responses such as Heart Rate Variability(HRV), Galvanic Skin Response(GSR) and skin temperature under rest and visual stimulation conditions, respectively. Off-time subjective assessments were recorded before and after visual stimulations. Real-time subjective assessments were recorded during visual stimulations. The results of physiological responses and off-time and real-time subjective assessments were quantified and compared. The results showed that the correlation between physiological responses and real-time subjective assessments was high (83%) for both the positive and negative visual stimulation. The correlation between the physiological responses and off-time subjective assessments was high (83%) for the negative visual stimulation but was low (15%) for the positive visual stimulation. Although the current observation is preliminary and requires more careful experimental study, it appears that the correlation between real-time subjective assessment and physiological responses is higher than that of the off-time subjective assessment and physiological responses.

  • PDF

Event-related potentials reveal neural signatures of cross-modal interaction between visual and tactile stimulation (유발전위신호(ERP)를 통한 시각과 촉각 통합작용의 신경생리적 특징 분석)

  • Ju, Yu-Mi;Lee, Kyoung-Min
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2010.05a
    • /
    • pp.48-54
    • /
    • 2010
  • INTRODUCTION Interaction between temporal events at the millisecond level is important for visual and tactile interaction. OBJECT The aim of the present study is to identify any neural signature, as reflected in event-related potentials (ERP), for the integrative processes when the two sensory modalities are stimulated in synchrony as opposed to when they are stimulated separately. METHOD The basic strategy was to compare ERP signals obtained with simultaneous visual and tactile stimulation with a linear summation of ERP patterns obtained with each modality stimulated separately. Condition were presented, paired with various stimulus-onset-asynchronies (SOA) ranging from - 300 ms (tactile-first) to 300 ms (visual-first), and in trials where only one modality was stimulated alone. RESULT A positive deviation was located in observed ERP at C4 electrode (contralateral to the stimulated hand) at 200-400 ms, in comparison to the predicted ERP. The deviation was present at all SOAs other than -300ms (tactile-first) and 300 ms (visual-first). There was also a positive deviation at occipital leads at the 50-ms SOA (visual-first) trials. DISCUSSION It suggested that neural signatures of cross-modal integration occur within a limited time-window. The deviations were specifically localized at the contralateral somatosensory and visual cortices, indicating that the integration happens at or before the level of the primary cortices.

  • PDF

Colour Appearance Modelling based on Background Lightness and Colour Stimulus Size in Displays (디스플레이에서 배경의 밝기와 색채 자극의 크기에 따른 컬러 어피어런스 모델링)

  • Hong, Ji Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2018
  • This study was conducted to reproduce digital colour based on the lightness of the background and size of the colour stimulus so that colour can be similarly perceived under different conditions. With the evolution of display technologies, display devices of various sizes can now reproduce more accurate colour and enhanced images, thus affecting the overall quality of display images. This study reproduced digital colour by considering the visual characteristics of the digital media environment. To accomplish this, we developed a colour appearance model which distinguishes the properties of foveal and peripheral vision. The proposed model is based on existing research on the lightness of the background and size of the colour stimulus. Based on experimental results, an analysis of variance was performed in order to develop the colour appearance model. The algorithm and modelling were verified based on the proposed model. In addition, to apply this model to display technologies, a practical colour control system and a method for handling complex input images were developed. Through this research, colour conversion errors which might occur when the input image is converted to fit a specific display size are resolved from the perspective of the human visual system. As a result, more accurate colour can be displayed and enhanced images can be reproduced.