• Title/Summary/Keyword: Visual Sensing

Search Result 260, Processing Time 0.028 seconds

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors (고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석)

  • Lee, Ha-Seong;Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

대전광역시 도시화 패턴 분석을 위한 원격탐사 자료 처리 및 다중시기 토지이용 현황도 제작

  • Kim, Youn-Soo;Lee, Kwang-Jae;Jeon, Gap-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The importance of satellite data for numerous applications is stressed by the fact that many countries have given the development of space technologies very high priority. Among these, Korea has established a medium-term space development strategy to promote space development both on a scientific as well as commercial level. As part of this strategy, the first operational earth-observation, multi-purpose satellite(KOMPSAT-1) was launched successfully in December, 1999. The Electro-Optical Camera (EOC) on board of KOMPSAT-1 supplies panchromatic images with a spatial resolution of 6.6m Until April, 2004, it collected over 150.000 images of the Korean Peninsula and the rest of the world. This paper examines the use of remote sensing data to analyze urban growth in the city of Daejeon from 1960 to 2003. By using visual interpretation, land use maps are created.

  • PDF

Pansharpening Method for KOMPSAT-2/3 High-Spatial Resolution Satellite Image (아리랑 2/3호 고해상도 위성영상에 적합한 융합기법)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Jeong, Nam-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 2015
  • This paper presents an efficient image fusion method to be appropriate for the KOMPSAT-2 and 3 satellites. The proposed method is based on the well-established component substitution (CS) approach. The proposed method is divided into two parts: 1) The first step is to create a intensity image by the weighted-averaging operation of a multi-spectral (MS) image and 2) the second step is to produce an optimal high-frequency image using the statistical properties of the original MS and panchromatic (PAN) images. The performance of the proposed method is evaluated in both quantitative and visual analysis. Quantitative assessments are performed by using the relative global dimensional synthesis error (Spatial and Spectral ERGAS), the image quality index (Q4), and the spectral angle mapper index (SAM). The qualitative and quantitative assessment results show that the fusion performance of the proposed method is improved in both the spectral and spatial qualities when it is compared with previous CS-based fusion methods.

An analysis of Self-perceived Communication Apprehension by Learning Styles of Engineering Students (공과대학생의 학습양식에 따른 의사소통 불안인식 분석 연구)

  • Kim, Ji-Sim;Choi, Keum-Jin;Lee, Jong-Yeon
    • Journal of Engineering Education Research
    • /
    • v.13 no.6
    • /
    • pp.3-13
    • /
    • 2010
  • The purpose of this study was to investigate between learning styles and communication apprehension of Engineering students. Participants were 405 first-year Engineering cohort. Following were the results: First, 80 percent were classified as Reflective learners, 61 percent were classified as Sensing learners, 73.1 percent were classified as Visual learners, and 66.7 percent were classified as Global learners. Second, the result showed that there was a significant difference in learning style by gender. Most female learners were Reflective, while most male learners were Active. Lastly, the finding revealed that there were significant differences in communication apprehension on Perception and Processing dimension. Sensing students demonstrated higher level of communication apprehension than Intuitive students and Reflective students shown higher level of communication apprehension than Active students. For the program developing Engineering students' communication skills, implications for reducing students' communication apprehension based on the type of learning styles were discussed.

  • PDF

Evaluating Green Network based on Pixel of Landsat TM Satellite Image (Landsat TM 위성영상 픽셀 기반의 녹지 연계망 평가)

  • Lee, Dong-Youn;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • At present, monitoring programmes for green network have been mainly based on field sampling, which relies on attributes of an area at one point in time, reflecting an emphasis on the small number of in-situ data. One of the major disadvantages of traditional field monitoring is that it is costly, laborious and time consuming due to the large number of samples required. The aim of this research was to evaluate green network based on pixel of Landsat TM satellite image. An empirical study for a case study site was conducted to demonstrate how a standard remote sensing technology can be used to assist in monitoring the green network based on pixel. The pixel-based analysis made it possible to identify area-wide patterns of green network subject to many different type of artificial structures, which cannot be acquired by traditional field sampling. It was demonstrated that the degradation trends of green network could be used effectively as an indicator to restrict further development of the sites since the quantitative data generated from remote sensing can present area-wide visual evidences by permanent record. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making in monitoring green network.

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks (항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석)

  • Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

Noise Band Extraction of Hyperion Image using Quadtree Structure and Fractal Characteristic (Quadtree 구조 및 프랙탈 특성을 이용한 Hyperion 영상의 노이즈 밴드 추출)

  • Chang, An-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.489-495
    • /
    • 2010
  • Hyperspectral imaging obtains information with a wider wavelength range a large number of bands. However, a high correlation between each band, computation cost, and noise causes inaccurate results in cases of no pre-processing. The noises of band extraction and elimination positively necessary in hyperspectral imaging. Since the previous studies have used a characteristic the whole image, a local characteristic of the image is considered for the noise band extraction. In this study, the Quadtree, which is a data structure algorithm. and the fractal dimension are adopted for noise band extraction in Hyperion images. The fractal dimensions of the segments divided by the Quadtree structure are calculated, and variation is used. We focused on the extraction of random noise bands in Hyperion images and compared them with the reference data made by visual decisions. The proposed algorithm extracts the most bands, including random noises. It is possible to eliminate more than 30 noise bands, regardless of images.

An Adaptive Dynamic Range Linear Stretching Method for Contrast Enhancement (영상 강조를 위한 Adaptive Dynamic Range Linear Stretching 기법)

  • Kim, Yong-Min;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • Image enhancement algorithm aims to improve the visual quality of low contrast image through eliminating the noise and blurring, increasing contrast, and raising detail. This paper proposes adaptive dynamic range linear stretching(ADRLS) algorithm based on advantages of existing methods. ADRLS method is focused on generating sub-histograms of the majority through partitioning the histogram of input image and applying adaptive scale factor. Generated sub-histograms are finally applied by linear stretching(LS) algorithm. In order to validate proposed method, it is compared with LS and histogram equalization(HE) algorithm generally used. As the result, the proposed method show to improve contrast of input image and to preserve distinct characteristics of histogram by controlling excessive change of brightness.

Development of GRD Measurement Method using Natural Target in Imagery (영상 내 자연표적을 이용한 GRD 측정기법 개발)

  • Kim, Jae-In;Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.527-536
    • /
    • 2010
  • This paper reports a reliable GRD (Ground Resolved Distance) measurement method of using natural targets instead of the method using artificial targets. For this, we developed an edge profile extraction technique suitable for natural targets. We demonstrated the accuracy and stability of this technique firstly by comparing GRD values generated by this technique visually inspected GRD values for artificial targets taken in laboratory environments. We then demonstrated the feasibility of GRD estimation from natural targets by comparing GRD values from natural targets to those from artificial targets using satellite images containing both artificial and natural targets. The GRDs measured from the proposed method were similar to the values from visual inspection and the GRDs measured from the natural targets were similar to the values from artificial targets. These results support our proposed method is able to measure reliable GRD from natural targets.