• Title/Summary/Keyword: Visual Modeling

Search Result 487, Processing Time 0.036 seconds

A Study on Modeling of Bibliographic Framework Based on FRBR for Television Program Materials (방송영상자료의 FRBR기반 서지구조모형에 관한 연구)

  • Chung, Jin-Gyoo
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.41 no.1
    • /
    • pp.185-214
    • /
    • 2007
  • This study intends to design the bibliographic framework based on IFLA-FRBR model for television program materials and to evaluate this in terms of effectiveness of retrieval and usability of the system. The FRBR model supplies mote suitable bibliographic framework of audio-visual material which has a sufficient hierarchical relations and relative bibliographical records. The followings are research methods designed by this study; (1) The experimental metadata system named it FbCS based on FRBR was developed by using the entity-related database and composed of multi-layed and hierarchy. FbCS is developed through benchmarking of a case study for iMMix model in Netherlands based on FRBR. (2) To evaluate effectiveness of retrieval and usability of FbCS, this study made a experiment and survey by user groups of professionals.

A Pre-Visualization Method for FDM 3D Printing Based on Perlin Noise (FDM 3D 프린팅을 위한 Perlin 노이즈 기반 사전 시각화 기법)

  • Lim, Jae-Gwang;Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.224-233
    • /
    • 2016
  • We propose a new method to visualize 3D models for FDM (Fused Deposition. Modeling) printing that appearance of the printed results can be predicted more realistically as that the efficiency of the modeling-printing process can be improved. The layered nature of horizontal slicing and the vibratory nozzle movements of customer-level FDM 3D printers leaving the characteristic patterns of noisy stripes on the surfaces of printed objects make difficulties in prediction of printed result in company with the thermal contraction of filament material. First, our method analyses the G-codes generated by common slicers to obtain proper outlines and take advantages of a modified version of Perlin noise based texturing method for rendering efficiency and enough number of control parameters on the visual details. The results show improved rendering details of pre-visualization of FDM printing.

Decision of Optimal Density of Airbone LiDAR Points for City zone (도시지역을 위한 항공라이다의 최적 점 밀도 결정)

  • Kim, Kam-Lae;Kim, Sang-Bong;Kim, Nam-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.445-452
    • /
    • 2009
  • Through the Airbone LiDAR point, the study for three-dimensional modeling of the city zone has been in progress. So, deciding the Density of Airbone LiDAR point for that is very important to get a result of three-dimensional modeling of the city zone and make efficient use of airbone LiDAR. This study made the standard density to decide the optimum density of Airbone LiDAR point in the city zone. Through each standard density point of DSM and the outline of the buildings, It executed the visual evaluation and the accuracy inspection to decide the optimum density point, and presented the optimum density for the airbone LiDAR point in the city zone.

A Study on the Photo-realistic 3D City Modeling Using the Omnidirectional Image and Digital Maps (전 방향 이미지와 디지털 맵을 활용한 3차원 실사 도시모델 생성 기법 연구)

  • Kim, Hyungki;Kang, Yuna;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.253-262
    • /
    • 2014
  • 3D city model, which consisted of the 3D building models and their geospatial position and orientation, is becoming a valuable resource in virtual reality, navigation systems, civil engineering, etc. The purpose of this research is to propose the new framework to generate the 3D city model that satisfies visual and physical requirements in ground oriented simulation system. At the same time, the framework should meet the demand of the automatic creation and cost-effectiveness, which facilitates the usability of the proposed approach. To do that, I suggest the framework that leverages the mobile mapping system which automatically gathers high resolution images and supplement sensor information like position and direction of the image. And to resolve the problem from the sensor noise and a large number of the occlusions, the fusion of digital map data will be used. This paper describes the overall framework with major process and the recommended or demanded techniques for each processing step.

Pattern and Aesthetic Characteristics of Modem Fashion using Typography (타이포그래피를 이용한 현대패션의 유형과 미적 특성)

  • Kim, Sun-Young
    • The Research Journal of the Costume Culture
    • /
    • v.17 no.2
    • /
    • pp.283-295
    • /
    • 2009
  • This research covers the ways in which typography, which has been expressed in a diverse range of fields and changed communication functions from the era of reading to the era of feeling according to the change in the times and social demands, has been represented in modem fashion, along with examining its inherent aesthetic characteristics. I reviewed the general information of typography's fundamental notions and functions through documented records, and analyzed the inherent aesthetic characteristics by examining the typographical patterns shown in modem fashion based on art works in domestic and international collections after 2000. The result of this research is that typography in modem fashion has been used for improving brand image, expressing social slogans, expressing images, linguistic function for playful expression and the interdependent relationships of modeling functions. Typography in modem fashion has always been diversely expressed harmoniously with linguistic and modeling functions. Through this, the aesthetic characteristics were firstly parodies through direct sentences addressing political and social ideologies, economic gaps, environmental issues and anti-war protests. Secondly, by using brand logos, typography was used as a commercial means like brand-image transfer and separation through customization of other brands. Thirdly, the aesthetic and artistic value of fashion were expressed after being used as experimental visual components like image, motive and patterns which are all elements of fashion design. Fourthly, by distortion and transformation of characters or childish decorations, along with the harmonization of words, cathartic humor was provided for the calloused senses of modern people.

  • PDF

Simulator Development and Analysis for Signal Flow Pathway in Vertebrate Retina (척추동물 망막의 신호 전달 경로 시뮬레이터 개발 및 분석)

  • Baek, Seungbum;Jang, Young-Jo;Cho, Kyoungrok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.655-664
    • /
    • 2018
  • Retina transforms the external light into electrical signal that stimulates visual cortex of the brain. Electrical modeling of the retina is useful to understand its structure and action that is a prerequisite to implement the retina as a hardware device. This paper introduces a 2-D electrical network model of vertebrate's retina considering signal pathway of retinal cells and synapses. We implemented a simulator of the retina based on the electrical network model to analyze its operation under various circumstances. Compared to the prior studies, It might contribute designing of artificial retina device in terms of that this study specifically observed input and output reactions of each cell and synapse node under various light intensity on the retina.

3D WALK-THROUGH ENVIRONMENTAL MODEL FOR VISUALIZATION OF INTERIOR CONSTRUCTION PROGRESS MONITORING

  • Seungjun Roh;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.920-927
    • /
    • 2009
  • Many schedule delays and cost overruns in interior construction are caused by a lack of understanding in detailed and complicated interior works. To minimize these potential impacts in interior construction, a systematic approach for project managers to detect discrepancies at early stages and take corrective action through use of visualized data is required. This systematic implementation is still challenging: monitoring is time-consuming due to the significant amount of as-built data that needs to be collected and evaluated; and current interior construction progress reports have visual limitations in providing spatial context and in representing the complexities of interior components. To overcome these issues, this research focuses on visualization and computer vision techniques representing interior construction progress with photographs. The as-planned 3D models and as-built photographs are visualized in a 3D walk-through model. Within such an environment, the as-built interior construction elements are detected through computer vision techniques to automatically extract the progress data linked with Building Information Modeling (BIM). This allows a comparison between the as-planned model and as-built elements to be used for the representation of interior construction progress by superimposing over a 3D environment. This paper presents the process of representing and detecting interior construction components and the results for an ongoing construction project. This paper discusses implementation and future potential enhancement of these techniques in construction.

  • PDF

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

A Study of Pre-Service Secondary Science Teacher's Conceptual Understanding on Carbon Neutral: Focused on Eye Tracking System (탄소중립에 관한 중등 과학 예비교사들의 개념 이해 연구 : 시선추적시스템을 중심으로)

  • Younjeong Heo;Shin Han;Hyoungbum Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.261-275
    • /
    • 2023
  • The purpose of this study was to analyze the conceptual understanding of carbon neutrality among secondary school science pre-service teachers, as well as to identify gaze patterns in visual materials. For this study, gaze tracking data of 20 pre-service secondary school science teachers were analyzed. Through this, the levels of conceptual understanding of carbon neutrality were categorized for the participants, and differences in gaze patterns were analyzed based on the degree of conceptual understanding of carbon neutrality. The research findings are as follows. First, as a result of performing modeling activities to predict carbon emissions and removals until 2100 using the concept of '2050 carbon neutrality,' 50% of the participants held a conception that carbon emissions would continue to increase. Additionally, 25% of the participants did not properly understand the causal relationship between net carbon dioxide emissions and cumulative concentrations. Second, the gaze movements of the participants regarding visual materials related to carbon neutrality were significantly influenced by the information presented in the text area, and in the case of graphs, the focus was mainly on the data area. Moreover, when visual data with the same function and category were arranged, participants showed the most interest in materials explaining concepts or visual data placed on the left side. This implies a preference for specific positions or orders. Participants with lower levels of conceptual understanding and inadequate grasp of causal relationships among elements exhibited notably reduced concentration and overall gaze flow. These findings suggest that conceptual understanding of carbon neutrality including climate change and natural disaster significantly influences interest in and engagement with visual materials.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.