• Title/Summary/Keyword: Visual Distance

Search Result 736, Processing Time 0.032 seconds

A study on real-time path planning and visual tracking of the micro mobile robot (소형 이동 로봇의 실시간 경로계획과 영상정보에 의한 추적제어)

  • 김은희;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.25-29
    • /
    • 1997
  • In this thesis, we construct the microrobot succor system and navigate the real-time path planning and visual tracking of each robot. The system consists robots, vision system and a host computer. Because the robots are free-ranging mobile robot, it is needed to make and gallow the path. The path is planned and controlled by a host computer, ie. Supervisory control system. In path planning, we suggest a cost function which consists of three terms. One is the smoothness of the path, another is the total distance or time, and the last one is to avoid obstacles. To minimize the cost function, we choose the parametric cubic spline and update the coefficients in real time. We perform the simulation for the path planing and obstacle avoidance and real experiment for visual tracking

  • PDF

Visual Tracking of Moving Target Using Mobile Robot with One Camera (하나의 카메라를 이용한 이동로봇의 이동물체 추적기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.

A Novel Visual Servoing Approach For Keeping Feature Points Within The Field-of-View (특징점이 Field of View를 벗어나지 않는 새로운 Visual Servoing 기법)

  • Park, Do-Hwan;Yeom, Joon-Hyung;Park, Noh-Yong;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.322-324
    • /
    • 2007
  • In this paper, an eye-in-hand visual servoing strategy for keeping feature points within the FOV(field-of-view) is proposed. We first specify the FOV constraint which must be satisfied to keep the feature points within the FOV. It is expressed as the inequality relationship between (i) the LOS(jine-of-sight) angles of the center of the feature points from the optical axis of the camera and (ii) the distance between the object and the camera. We then design a nonlinear feedback controller which decouples linearly the translational and rotational control loops. Finally, we show that appropriate choice of the controller gains assures to satisfy the FOV constraint. The main advantage of our approach over the previous ones is that the trajectory of the camera is smooth and circular-like. Furthermore, ours can be applied to the large camera displacement problem.

  • PDF

On the Development of a Spatial Hybrid Visual Alignment System (3차원 하이브리드 비전 정렬 시스템에 관한 연구)

  • Hwang, Jae-Woong;Kwon, Sang-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.79-87
    • /
    • 2011
  • In this paper, suggested is a hybrid-type visual alignment system to align mask and panel in 3-D space, where mask and panel are to be controlled independently by two individual positioning mechanisms in order to compensate for spatial misalignments. In the hybrid visual alignment system, the below 4-PPR parallel mechanism provides in-plain motions to pattern mask like the other conventional alignment systems while the above 4-RPS parallel mechanism is to move glass panel to achieve a complete spatial alignment. For the control of the hybrid alignment system, first, inverse kinematic solutions for the parallel mechanisms are given to determine the driving distance of each active joint, and also an efficient way to determine the spatial alignment error is developed by exploiting three in-plane cameras.

Method for Local Contrast Control in DCT Domain (DCT영역에서의 국부 Contrast 조절 기법)

  • Tran, Nhat Huy;Minh, Trung Bui;Kim, Won-Ha;Kim, Seon-Guk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.8-11
    • /
    • 2013
  • We implement the foveation and frequency sensitivity feature of human visual system in discrete cosine transform (DCT) domain. Resolution of human visual perception decays as distance from the eye-focused point, known as foveation property, and the middle frequency components give most pleasant image quality to human than the low and high frequency components, which is the frequency sensitivity property of human visual system. For satisfying the foveation property, we enhanced the local contrast at the focused regions and smoothed local contrast at the non-focused regions in the DCT domain without bringing the blocking and ringing artifacts. Moreover, the energies at each DCT frequency components is modified with various degree to fulfill the frequency sensitivity property. The proposed method is verified by the subjective and objective evaluations that it can the improve the human perceptual visual quality.

  • PDF

An Evaluation System to Determine the Completeness of a Space Map Obtained by Visual SLAM (Visual SLAM을 통해 획득한 공간 지도의 완성도 평가 시스템)

  • Kim, Han Sol;Kam, Jae Won;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.417-423
    • /
    • 2019
  • This paper presents an evaluation system to determine the completeness of a space map obtained by a visual SLAM(Simultaneous Localization And Mapping) algorithm. The proposed system consists of three parts. First, the proposed system detects the occurrence of loop closing to confirm that users acquired the information from all directions. Thereafter, the acquired map is divided with regular intervals and is verified whether each area has enough map points to successfully estimate users' position. Finally, to check the effectiveness of each map point, the system checks whether the map points are identifiable even at the location where there is a large distance difference from the acquisition position. Experimental results show that space maps whose completeness is proven by the proposed system has higher stability and accuracy in terms of position estimation than other maps that are not proven.

A detailed information browsing as a standard of the hierarchical structure on 3D national treasure building (3D 건조물 문화재의 계층적 구조를 기반으로 한 상세정보브라우징)

  • Jung, jung-il;Cho, Jin-so
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.816-821
    • /
    • 2009
  • In this paper, I would like to talk about a step by step detailed information browsing which is founded on hierarchical structure for offering suitable information about the mass 3D data of a national treasure building to user as a standard of the visual distance. A step by step detailed information of the national treasure building of gigantic proportions offers a process of detailed information browsing which decided suitable hierarchical structure as considering of the preprocessing procedure which produces hierarchical structure and a visual distance of user. In the preprocessing procedure, 3D data is divided and controlled by optimized spacial structures. The relevance connection between the inner spacial surface is then examined and reconfigured in order to prevent holes or distortions. Finally, relative information data is created. In detailed information browsing, by examining the visual distance between model and user, then by browsing proper step of data, suitable level model data can be provided to the users in accordance with the position of observation.

  • PDF

Research on Visibility in Tourist Attraction of Mt. Sorak Focused on Dae Chung Bong and Kwon Keum Sung (대청봉과 권금성을 중심으로한 설악산 관광명소의 시정(視程)조사)

  • 한국대기환경학회
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.289-297
    • /
    • 2001
  • From March 1998 to February 1999, we observed visibility and weather change in Dae Chung Bong and Kwon Keum Sung three times a day; at 10 Am, 1 PM and 4 PM. During research period (357 days for Kwon Keum Sung, 351 days for Dae Chung Bong), clear days were 185 days(52%) in Kwon Keum Sung and 149 days (43%) in Dae Chung Bong. Months that had many clear days in a year were December and January in both area. The rate of clear day to cloudy day in Sokcho downtown and Dae Chung Bong was 5 to 5, 4 to 6, respectively. The number of cloudy day in a year in Dae Chung Bong was 34days more than in Sokcho downtown. The visual distance in Kwon Keum Sung was 12.2km on the clear day, and 3.3km on the cloudy day. The yearly average was 7.9km. And we can see 8.9km farther on the clear day. The visual distance in Dae Chung Bong was 13.3km on the clear day, and 3.1km on the cloudy day. The yearly average was 8.1km. The visibility of clear day was 10.2km longer than that of cloudy day. The percentage to observe East Sea clearly was about 70% between December and January in both areas, and showed the highest visibility during research period. We observed Mt. Keumkang from 3 to 6 times in a month except rainy season. The yearly average visibility was 2%. If you go Mt. Serok except April, when there was yellow duet cloud from China, and rainy season (between the last of June and early of September), you can appreciate the most beautiful Mt. Sorak with Mt. Keumkang.

  • PDF

A Comparison of Reliability and Anterior Glide Distance of Humerus Head of Passive Shoulder Internal Rotation Range of Motion Measurement Methods (어깨관절의 수동적 내회전 관절 가동범위의 측정 방법에 따른 신뢰도와 상완골두의 전방 활주 거리 비교)

  • Kim, Hyun-Sook;Lee, Won-Hwee;Choung, Sung-Dae
    • Physical Therapy Korea
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • The purpose of this study was to measure intra-rater and inter-rater reliability and range of motion for measurement of passive shoulder internal rotation range of motion and to compare anterior glide distance of humeral head in three methods. Fifty healthy subjects and fifty patients with shoulder musculoskeletal pain were recruited for this study. The subjects' passive shoulder internal rotation range of motion was measured by visual estimation, manual stabilization, and pressure biofeedback unit methods. In two trials, measurements were performed on each subject by two examiners. Intraclass correlation coefficient (ICC(3,1)) was used to determine the reliability of each measurement. The intra-rater reliability of the three methods was excellent (ICC=.77~.93) in both groups. The inter-rater reliability of the visual estimation method was poor (ICC=.20, .29), the manual scapular stabilization method was poor and fair (ICC=.09, .50), and the pressure biofeedback unit method was excellent (ICC .86, .75) in the experimental and control groups. In the experimental group, the difference of examined range of motion by each examiner was significant in the visual estimation method and manual scapular stabilization method, but there was an insignificant difference between the groups is the pressure biofeedback unit method. This result suggests that the intra-rater and inter-rater reliability of a pressure biofeedback unit was better than the other methods. The difference in distance of the anterior glide of humeral head was insignificant among all the methods. The pressure biofeedback unit method was the most reliable method, so it is proposed to be a new and reliable method to measure internal rotation range of motion.

Design of Fuzzy Inference System for Cameras Inter-Axial Distance Control of Remote Stereoscopic Photographs (원거리 입체촬영용 카메라 축간거리 조절을 위한 퍼지추론 시스템)

  • Byun, Gi-Sig;Oh, Sei-Woong;Kim, Gwan-Hyung;Kim, Min;Kim, Hyun-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • The common way to obtain a stereoscopic image of a subject at a distance is to place two cameras on the parallel axis rather than crossing axis. To find the IAD and maximum focal length, left and right images are obtained by varying the IAD of cameras and the focal length of the camera lens and the depth budget for the obtained images is analyzed through post production. Then, the database for IAD and focal length of the camera lens with the depth range that does not cause visual fatigue and visual discomfort are developed. These data are used to design fuzzy control and deduce the IAD and focal length of the camera lens to shoot a subject at a distance, and the function of the fuzzy control is confirmed through the actual shooting within the range of deduced IAD and focal length of the camera lens.