• Title/Summary/Keyword: Vision-based monitoring

Search Result 237, Processing Time 0.024 seconds

Real-time Water Quality Monitoring System Using Vision Camera and Multiple Objects Tracking Method (비젼 카메라와 다중 객체 추적 방법을 이용한 실시간 수질 감시 시스템)

  • Yang, Won-Keun;Lee, Jung-Ho;Cho, Ik-Hwan;Jin, Ju-Kyong;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.401-410
    • /
    • 2007
  • In this paper, we propose water quality monitoring system using vision camera and multiple objects tracking method. The proposed system analyzes object individually using vision camera unlike monitoring system using sensor method. The system using vision camera consists of individual object segmentation part and objects tracking part based on interrelation between successive frames. For real-time processing, we make background image using non-parametric estimation and extract objects using background image. If we use non-parametric estimation, objects extraction method can reduce large amount of computation complexity, as well as extract objects more effectively. Multiple objects tracking method predicts next motion using moving direction, velocity and acceleration of individual object then carries out tracking based on the predicted motion. And we apply exception handling algorithms to improve tracking performance. From experiment results under various conditions, it shows that the proposed system can be available for real-time water quality monitoring system since it has very short processing time and correct multiple objects tracking.

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

Vision Based Traffic Data Collection in Intelligent Transportation Systems

  • Mei Yu;Kim, Yong-Deak
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.773-776
    • /
    • 2000
  • Traffic monitoring plays an important role in intelligent transportation systems. It can be used to collect real-time traffic data concerning traffic flow. Passive shadows resulted from roadside buildings or trees and active shadows caused by moving vehicles, are one of the factors that arise errors in vision based vehicle detection. In this paper, a land mark based method is proposed for vehicle detection and shadow rejection, and finally vehicle count are achieved based on the land mark detection method.

  • PDF

Tool Condition Monitoring Technique Using Computer Vision and Pattern Recognition (컴퓨터 비젼 및 패턴인식기법을 이용한 공구상태 판정시스템 개발)

  • 권오달;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 1993
  • In unmanned machining, One of the most essential issue is the tool management system which includes controlling. identification, presetting and monitoring of cutting tools. Especially the monitoring of tool wear and fracture may be the heart of the system. In this study a computer vision based tool monitoring system is developed. Also an algorithm which can determine the tool condition using this system is presented. In order to enhance practical adaptability the vision system through which two modes of images are taken is located over the rake face of a tool insert. And they are analysed quantitatively and qualitatively with image processing technique. In fact the morphologies of tool fracture or wear are occurred so variously that it is difficult to predict them. For the purpose of this problem the pattern recognition is introduced to classify the modes of the tool such as fracture, crater, chipping and flank wear. The experimental results performed in the CNC turning machine have proved the effectiveness of the proposed system.

Computer vision monitoring and detection for landslides

  • Chen, Tim;Kuo, C.F.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • There have been a few checking frameworks intended to ensure and improve the nature of their regular habitat. The greater part of these frameworks are constrained in their capacities. In this paper, the insightful checking framework intended for debacle help and administrations has been exhibited. The ideal administrations, necessities and coming about plan proposition have been indicated. This has prompted a framework that depends fundamentally on ecological examination so as to offer consideration and security administrations to give the self-governance of indigenous habitats. In this sense, ecological acknowledgment is considered, where, in light of past work, novel commitments have been made to help include based and PC vision situations. This epic PC vision procedure utilized as notice framework for avalanche identification depends on changes in the normal landscape. The multi-criteria basic leadership strategy is used to incorporate slope data and the level of variety of the highlights. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

A VISION SYSTEM IN ROBOTIC WELDING

  • Absi Alfaro, S. C.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.314-319
    • /
    • 2002
  • The Automation and Control Group at the University of Brasilia is developing an automatic welding station based on an industrial robot and a controllable welding machine. Several techniques were applied in order to improve the quality of the welding joints. This paper deals with the implementation of a laser-based computer vision system to guide the robotic manipulator during the welding process. Currently the robot is taught to follow a prescribed trajectory which is recorded a repeated over and over relying on the repeatability specification from the robot manufacturer. The objective of the computer vision system is monitoring the actual trajectory followed by the welding torch and to evaluate deviations from the desired trajectory. The position errors then being transfer to a control algorithm in order to actuate the robotic manipulator and cancel the trajectory errors. The computer vision systems consists of a CCD camera attached to the welding torch, a laser emitting diode circuit, a PC computer-based frame grabber card, and a computer vision algorithm. The laser circuit establishes a sharp luminous reference line which images are captured through the video camera. The raw image data is then digitized and stored in the frame grabber card for further processing using specifically written algorithms. These image-processing algorithms give the actual welding path, the relative position between the pieces and the required corrections. Two case studies are considered: the first is the joining of two flat metal pieces; and the second is concerned with joining a cylindrical-shape piece to a flat surface. An implementation of this computer vision system using parallel computer processing is being studied.

  • PDF

A computer vision-based approach for crack detection in ultra high performance concrete beams

  • Roya Solhmirzaei;Hadi Salehi;Venkatesh Kodur
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.341-348
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.