• 제목/요약/키워드: Vision language model

검색결과 43건 처리시간 0.027초

웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구 (A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model)

  • 장현철;장형국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.

작물 수확 자동화를 위한 시각 언어 모델 기반의 환경적응형 과수 검출 기술 (Domain Adaptive Fruit Detection Method based on a Vision-Language Model for Harvest Automation)

  • 남창우;송지민;진용식;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권2호
    • /
    • pp.73-81
    • /
    • 2024
  • Recently, mobile manipulators have been utilized in agriculture industry for weed removal and harvest automation. This paper proposes a domain adaptive fruit detection method for harvest automation, by utilizing OWL-ViT model which is an open-vocabulary object detection model. The vision-language model can detect objects based on text prompt, and therefore, it can be extended to detect objects of undefined categories. In the development of deep learning models for real-world problems, constructing a large-scale labeled dataset is a time-consuming task and heavily relies on human effort. To reduce the labor-intensive workload, we utilized a large-scale public dataset as a source domain data and employed a domain adaptation method. Adversarial learning was conducted between a domain discriminator and feature extractor to reduce the gap between the distribution of feature vectors from the source domain and our target domain data. We collected a target domain dataset in a real-like environment and conducted experiments to demonstrate the effectiveness of the proposed method. In experiments, the domain adaptation method improved the AP50 metric from 38.88% to 78.59% for detecting objects within the range of 2m, and we achieved 81.7% of manipulation success rate.

시각-언어 이동 에이전트를 위한 복합 학습 (Hybrid Learning for Vision-and-Language Navigation Agents)

  • 오선택;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권9호
    • /
    • pp.281-290
    • /
    • 2020
  • 시각-언어 이동 문제는 시각 이해와 언어 이해 능력을 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각-언어 이동 에이전트를 위한 새로운 학습 모델을 제안한다. 이 모델은 데모 데이터에 기초한 모방 학습과 행동 보상에 기초한 강화 학습을 함께 결합한 복합 학습을 채택하고 있다. 따라서 이 모델은 데모 데이터에 편향될 수 있는 모방 학습의 문제와 상대적으로 낮은 데이터 효율성을 갖는 강화 학습의 문제를 상호 보완적으로 해소할 수 있다. 또한, 제안 모델에서는 기존의 목표 기반 보상 함수들의 문제점을 해결하기 위해 설계된 새로운 경로 기반 보상 함수를 이용한다. 본 논문에서는 Matterport3D 시뮬레이션 환경과 R2R 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 제안 모델의 높은 성능을 입증하였다.

LVLN: 시각-언어 이동을 위한 랜드마크 기반의 심층 신경망 모델 (LVLN : A Landmark-Based Deep Neural Network Model for Vision-and-Language Navigation)

  • 황지수;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권9호
    • /
    • pp.379-390
    • /
    • 2019
  • 본 논문에서는 시각-언어 이동 문제를 위한 새로운 심층 신경망 모델인 LVLN을 제안한다. LVLN 모델에서는 자연어 지시의 언어적 특징과 입력 영상 전체의 시각적 특징들 외에, 자연어 지시에서 언급하는 주요 장소와 랜드마크 물체들을 입력 영상에서 탐지해내고 이 정보들을 추가적으로 이용한다. 또한 이 모델은 자연어 지시 내 각 개체와 영상 내 각 관심 영역, 그리고 영상에서 탐지된 개별 물체 및 장소 간의 서로 연관성을 높일 수 있도록 맥락 정보 기반의 주의 집중 메커니즘을 이용한다. 그뿐만 아니라, LVLN 모델은 에이전트의 목표 도달 성공율을 향상시키기 위해, 목표를 향한 실질적인 접근을 점검할 수 있는 진척 점검기 모듈도 포함하고 있다. Matterport3D 시뮬레이터와 Room-to-Room (R2R) 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서 제안하는 LVLN 모델의 높은 성능을 확인할 수 있었다.

효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술 (Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction)

  • 박동건;강경민;배진우;한지형
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

ADD-Net: Attention Based 3D Dense Network for Action Recognition

  • Man, Qiaoyue;Cho, Young Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.21-28
    • /
    • 2019
  • Recent years with the development of artificial intelligence and the success of the deep model, they have been deployed in all fields of computer vision. Action recognition, as an important branch of human perception and computer vision system research, has attracted more and more attention. Action recognition is a challenging task due to the special complexity of human movement, the same movement may exist between multiple individuals. The human action exists as a continuous image frame in the video, so action recognition requires more computational power than processing static images. And the simple use of the CNN network cannot achieve the desired results. Recently, the attention model has achieved good results in computer vision and natural language processing. In particular, for video action classification, after adding the attention model, it is more effective to focus on motion features and improve performance. It intuitively explains which part the model attends to when making a particular decision, which is very helpful in real applications. In this paper, we proposed a 3D dense convolutional network based on attention mechanism(ADD-Net), recognition of human motion behavior in the video.

MEAN Stack 기반의 컴퓨터 비전 플랫폼 설계 (Computer Vision Platform Design with MEAN Stack Basis)

  • 홍선학;조경순;윤진섭
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.

딥러닝 기반 사전학습 언어모델에 대한 이해와 현황 (A Survey on Deep Learning-based Pre-Trained Language Models)

  • 박상언
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.11-29
    • /
    • 2022
  • 사전학습 언어모델은 자연어 처리 작업에서 가장 중요하고 많이 활용되는 도구로, 대량의 말뭉치를 대상으로 사전학습이 되어있어 적은 수의 데이터를 이용한 미세조정학습으로도 높은 성능을 기대할 수 있으며, 사전학습된 토크나이저과 딥러닝 모형 등 구현에 필요한 요소들이 함께 배포되기 때문에 자연어 처리 작업에 소요되는 비용과 기간을 크게 단축시켰다. 트랜스포머 변형 모형은 이와 같은 장점을 제공하는 사전학습 언어모델 중에서 최근 가장 많이 사용되고 있는 모형으로, 번역을 비롯하여 문서 요약, 챗봇과 같은 질의 응답, 자연스러운 문장의 생성 및 문서의 분류 등 다양한 자연어 처리 작업에 활용되고 있으며 컴퓨터 비전 분야와 오디오 관련 분야 등 다른 분야에서도 활발하게 활용되고 있다. 본 논문은 연구자들이 보다 쉽게 사전학습 언어모델에 대해 이해하고 자연어 처리 작업에 활용할 수 있도록 하기 위해, 언어모델과 사전학습 언어모델의 정의로부터 시작하여 사전학습 언어모델의 발전과정과 다양한 트랜스포머 변형 모형에 대해 조사하고 정리하였다.

한·일 교육정책 분석을 통한 일본어교육 발전방향 모색 (The Search for Development of Education in Japanese, through analysis of Korean and Japanese Education Policy)

  • 안지영
    • 동북아문화연구
    • /
    • 제39권
    • /
    • pp.347-360
    • /
    • 2014
  • This research, with the recent change in the paradigm of education, has its purpose on suggesting the direction of Japanese education that best suits the environment in Korea, by analyzing the education and information policy in Korea and Japan. As it is shown in Mackey's model, policy in language and education cannot be separated, and the 'smart education' policy as well as 'Education and Information Vision' that is implemented in Korea and Japan is likely to be connected with policies in language in the near future. Both of these policies has its goals on the spreading of information in education, and is predicted to lead to development in contents in regard to education of foreign language. When looking at recently developed smart-learning programs, it can be found that the credibility and authenticity is weak because in most of those programs, there was no participation of experts in Japanese education. Thus there is a need for expertise in Japanese education for development of these contents and also many attempts with application of 'smart-learning' collaboration of technology and academic knowledge in humanities and education is needed. At the same time, various support from the government is essential so that these policies can simultaneously work together, along with the field of foreign language education.