• Title/Summary/Keyword: Vision based Monitoring System

Search Result 151, Processing Time 0.035 seconds

Vision-based remote 6-DOF structural displacement monitoring system using a unique marker

  • Jeon, Haemin;Kim, Youngjae;Lee, Donghwa;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.927-942
    • /
    • 2014
  • Structural displacement is an important indicator for assessing structural safety. For structural displacement monitoring, vision-based displacement measurement systems have been widely developed; however, most systems estimate only 1 or 2-DOF translational displacement. To monitor the 6-DOF structural displacement with high accuracy, a vision-based displacement measurement system with a uniquely designed marker is proposed in this paper. The system is composed of a uniquely designed marker and a camera with a zooming capability, and relative translational and rotational displacement between the marker and the camera is estimated by finding a homography transformation. The novel marker is designed to make the system robust to measurement noise based on a sensitivity analysis of the conventional marker and it has been verified through Monte Carlo simulation results. The performance of the displacement estimation has been verified through two kinds of experimental tests; using a shaking table and a motorized stage. The results show that the system estimates the structural 6-DOF displacement, especially the translational displacement in Z-axis, with high accuracy in real time and is robust to measurement noise.

Intelligent Monitoring System for Solitary Senior Citizens with Vision-Based Security Architecture (영상보안 구조 기반의 지능형 독거노인 모니터링 시스템)

  • Kim, Soohee;Jeong, Youngwoo;Jeong, Yue Ri;Lee, Seung Eun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.639-641
    • /
    • 2022
  • With the increasing of aging population, a lot of researches on monitoring systems for solitary senior citizens are under study. In general, a monitoring system provides a monitoring service by computing the information of vision, sensors, and measurement values on a server. Design considering data security is essential because a risk of data leakage exists in the structure of the system employing the server. In this paper, we propose a intelligent monitoring system for solitary senior citizens with vision-based security architecture. The proposed system protects privacy by ensuring high security through an architecture that blocks communication between a camera module and a server by employing an edge AI module. The edge AI module was designed with Verilog HDL and verified by implementing on a Field Programmable Gate Array (FPGA). We tested our proposed system on 5,144 frame data and demonstrated that a dangerous detection signal is generated correctly when human motion is not detected for a certain period.

  • PDF

Study on Vision based Object Detection Algorithm for Passenger' s Safety in Railway Station (철도 승강장 승객안전을 위한 비전기반 물체 검지 알고리즘 연구)

  • Oh, Seh-Chan;Park, Sung-Hyuk;Jeong, Woo-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.553-558
    • /
    • 2008
  • Advancement in information technology have enabled applying vision sensor to railway, such as CCTV. CCTV has been widely used in railway application, however the CCTV is a passive system that provide limited capability to maintain safety from boarding platform. The station employee should monitor continuously CCTV monitors. Therefore immediate recognition and response to the situation is difficultin emergency situation. Recently, urban transit operators are pursuing applying an unattended station operation system for their cost reduction. Therefore, an intelligent monitoring system is need for passenger's safety in railway. The paper proposes a vision based monitoring system and object detection algorithm for passenger's safety in railway platform. The proposed system automatically detects accident in platform and analyzes level of danger using image processing technology. The system uses stereo vision technology with multi-sensors for minimizing detection error in various railway platform conditions.

  • PDF

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

A Study of Method for Construction of Wireless Vision Monitoring System for Fish-cage in Open Sea (외해 가두리 양식장용 무선 영상 감시 시스템 구축 방안에 대한 연구)

  • Oh, Jin-Seok;Kwak, Jun-Ho;Jung, Sung-Jae;Ham, Yeon-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.989-996
    • /
    • 2008
  • Recently, a few types of fish-cage in open sea are researched. This fish-cage has to operate monitoring system for keeping an optimum living condition for fish. The most efficient monitoring system is WVMS(Wireless Vision Monitoring System) for fish-cage in open sea. WVMS should be able to transmit video signal and communicate with each controller. So. it needs to be based on WLAN(Wireless LAN) which has characteristic of higher transfer-rate, In this paper, we propose a structure of WVMS using WLAN equipments for maritime environment and prove its effectiveness. We present the propagation loss model of WVMS's communication channel. measured by field test, and discuss its validity compared with the predictive value based on the Friss propagation model and Plane earth reflection model. We present the number of frames that is received from WLAN modem connecting with underwater-camera in field test spots. As a result, we confirmed that proposed WVMS is suitable for maritime environment and it is possible to be applied to fish-cage in open sea on 'seogwipo'.

Vision based Monitoring System for Safety in Railway Station (철도역사 안전을 위한 비전기반 승강장 모니터링 시스템)

  • Oh, Seh-Chan;Park, Sung-Hyuk;Lee, Chang-Mu
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.953-958
    • /
    • 2007
  • Passenger safety is a primary concern of railway system but, it has been urgent issue that dozens of people are killed every year when they are fallen from train platforms. In this paper, we propose a vision based monitoring system for railway station platform. The system immediately perceives dangerous factors of passengers on the platform by using image processing technology. To monitor almost entire length of the track line in the platform, we use several video cameras. Each camera conducts surveillance its own preset monitoring area whether human or dangerous object was fallen in the area. Moreover, to deal with the accident immediately, the system provides local station, central control room employees and train driver with the video information about the accident situation including alarm message. This paper introduces the system overview and detection process with experimental results. According to the results, we expect the proposed system will play a key role for establishing highly intelligent monitoring system in railway.

  • PDF

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Vision Sensor and Deep Learning-based Around View Monitoring System for Ship Berthing (비전 센서 및 딥러닝 기반 선박 접안을 위한 어라운드뷰 모니터링 시스템)

  • Kim, Hanguen;Kim, Donghoon;Park, Byeolteo;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • This paper proposes vision sensors and deep learning-based around view monitoring system for ship berthing. Ship berthing to the port requires precise relative position and relative speed information between the mooring facility and the ship. For ships of Handysize or higher, the vesselships must be docked with the help of pilots and tugboats. In the case of ships handling dangerous cargo, tug boats push the ship and dock it in the port, using the distance and velocity information receiving from the berthing aid system (BAS). However, the existing BAS is very expensive and there is a limit on the size of the vessel that can be measured. Also, there is a limitation that it is difficult to measure distance and speed when there are obstacles near the port. This paper proposes a relative distance and speed estimation system that can be used as a ship berthing assist system. The proposed system is verified by comparing the performance with the existing laser-based distance and speed measurement system through the field tests at the actual port.

Construction Site Scene Understanding: A 2D Image Segmentation and Classification

  • Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.333-335
    • /
    • 2015
  • A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.

  • PDF