• Title/Summary/Keyword: Vision area

Search Result 841, Processing Time 0.03 seconds

Development of Nut Sorting Machine by Area Labelling Method (영역 라벨링법에 의한 밤 선별기 개발)

  • Lee Seong-Cheol;Lee Young-Choon;Pang Du-Yeol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1858-1861
    • /
    • 2005
  • Automatic nut sorting machine used to calculate the size of inserted nut and detect the black spot defection is introduced in this paper. Because most of farm products are imported from the underdeveloped countries, domestic farm products have no place to be sold in market. To overcome this critical situation, lowering the productivity cost is strongly demanded to compete with foreign corps. Imaged processed nut sorting algorithm is developed to the automatic nut sorting machine to remove the sorting time which takes lots of man power. This system is composed of mainly two parts, mechanical parts and vision system. The purpose of mechanical part is supplying the nuts automatically to make computer system capture the images of objects. Simplified mechanical system was assembled followed by 3D simulation by Pro/E design for the adaptive cost effects. Several image processing algorithms are designed to detect the spot defects and calculate the size of nuts. Test algorithm shows good results to the designed automatic nut sorting system.

  • PDF

A Study on the Activities of Management Quality and Management Performance of Public and Private Organizations in the Metropolitan area (수도권 소재 공사기관의 경영품질활동과 경영성과에 관한 연구)

  • Chung, Young-Bae;Park, Hyung-Geun
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.4
    • /
    • pp.561-579
    • /
    • 2010
  • This study is to devide seven subject organs in the metropolitan area by the Malcolm Baldrige's basis which is global standard of management quality to grip the each activities of management quality, to conduct a survey of the management quality of each organ or persons in charge of similar works. Generally, those surveyed show to recognize on the management quality and to apply to real work. Those surveyed show to be able to improve positively quality and service level in case of appling to work of management quality, and to be positive reaction on the contribution about management performance. This study indicates the predominant view which the researcher have to establish the its vision clearly and to promote in a lump success factors of management quality, and the chief executive have to take a firm faith for it. This study also suggest that recognizing positively about its vision and strategy about present condition of management quality activities is one of the implements which not only judge but also establish a good system of an organization. And there has a significant difference between Public and Private Organizations that those evaluate management quality conducts better management performance. However management quality activities shows to mostly agree to be influencing positively to management performance.

A Study on Analog and Digital Meter Recognition Based on Image Processing Technique (영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구)

  • 김경호;진성일;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF

Automatic Detection System for Dangerous Abandoned Objects Based on Vision Technology (비전 기술에 기반한 위험 유기물의 자동 검출 시스템)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.69-74
    • /
    • 2009
  • Abandoned objects should be treated as possibly dangerous things for public areas until they turn out to be safe because explosive material or chemical substance is intentionally contained in them for public terrors. For large public areas such as airports or train stations, there are limits in man-power for security staffs to check all the monitors for covering the entire area under surveillance. This is the basic motivation of developing the automatic detection system for dangerous abandoned objects based on vision technology. In this research, well-known DBE is applied to stably extract background images and the HOG algorithm is adapted to discriminate between human and stuff for object classification. To show the effectiveness of the proposed system, experiments are carried out in detecting intrusion for a forbidden area and alarming for abandoned objects in a room under surveillance.

  • PDF

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (드릴가공시 신경망에 의한 공구 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영;김대성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1021-1024
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. In this paper, the vision system of the sensing methods of drill flank wear on the basis of image processing is used to detect the wear pattern by non-contact and direct method and get the reliable wear information about drill. In image processing of acquired image, median filter is applied for noise removal. The vision flank wear area of the drill was measured. Backpropagation neural networks (BPns) were used for no-line detection of drill wear. The neural network consisted of three layers: input, hidden and output. The input vectors comprised of spindle rotational speed, feed rates, vision flank wear, thrust and torque signals. The output was the drill wear state which was either usable or failure. Drilling experiments with various spindle rotational speed and feed rates were carried out. The learning process was peformed effectively by utilizing backpropagation. The detection of the abnormal states using BPNs achieved 96.4% reliability even when the spindle rotational speed and feedrate were changed.

  • PDF

Road marking classification method based on intensity of 2D Laser Scanner (신호세기를 이용한 2차원 레이저 스캐너 기반 노면표시 분류 기법)

  • Park, Seong-Hyeon;Choi, Jeong-hee;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.

Image Processing Methods for Measurement of Lettuce Fresh Weight

  • Jung, Dae-Hyun;Park, Soo Hyun;Han, Xiong Zhe;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.89-93
    • /
    • 2015
  • Purpose: Machine vision-based image processing methods can be useful for estimating the fresh weight of plants. This study analyzes the ability of two different image processing methods, i.e., morphological and pixel-value analysis methods, to measure the fresh weight of lettuce grown in a closed hydroponic system. Methods: Polynomial calibration models are developed to relate the number of pixels in images of leaf areas determined by the image processing methods to actual fresh weights of lettuce measured with a digital scale. The study analyzes the ability of the machine vision- based calibration models to predict the fresh weights of lettuce. Results: The coefficients of determination (> 0.93) and standard error of prediction (SEP) values (< 5 g) generated by the two developed models imply that the image processing methods could accurately estimate the fresh weight of each lettuce plant during its growing stage. Conclusions: The results demonstrate that the growing status of a lettuce plant can be estimated using leaf images and regression equations. This shows that a machine vision system installed on a plant growing bed can potentially be used to determine optimal harvest timings for efficient plant growth management.

Improvement of the Stereo Vision-Based Surface-Strain Measurement System for Large Stamped Parts (중.대형 판재성형 제품의 곡면변형률 측정을 위한 스테레오 비전 시스템의 개선)

  • 김형종;김두수;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.404-412
    • /
    • 2000
  • It is desirable to use the square grid analysis with the aid of the stereo vision and image processing techniques in order to automatically measure the surface-strain distribution over a stamped part. But this method has some inherent problems such as the difficulty in enhancement of bad images, the measurement error due to the digital image resolution and the limit of the area that can be measured at a time. Therefore, it is still hard to measure the strain distribution over the entire surface of a medium-or large-sized stamped part even by using an automated strain measurement system. In this study, several methods which enable to solve these problems considerably without losing accuracy and precision In measurement are suggested. The superposition of images that have different high-lightened or damaged part from each other gives much enhanced image. A new algorithm for constructing of the element connectivity from the line-thinned image helps recognize up to 1,000 elements. And the geometry assembling algorithm including the global error minimization makes it possible to measure a large specimen with reliability and efficiency.

  • PDF