• 제목/요약/키워드: Vision Builder

검색결과 8건 처리시간 0.024초

랩뷰 비전 빌더를 이용한 LED 결함 검출 시스템 (LED Deformity Detection Using LabVIEW Builder)

  • ;유성구;정길도
    • 전자공학회논문지SC
    • /
    • 제46권5호
    • /
    • pp.15-21
    • /
    • 2009
  • LED와 같은 소형 제품의 불량검색은 제품의 질을 향상 시키는 것만 아니라 생산성 향상에서 중요한 역할을 한다. 본 연구에서는 LED에 발생하는 여러 가지 불량을 자동으로 검사하는 시스템을 구성하였다. LABVIEW Builder를 사용하여 그래픽 인터페이스 상에서 LED의 불량을 검출을 자동판단하며, 사용자가 쉽게 사용 가능하도록 설계하였다. 1394 카메라를 통해 영상을 획득하고 Vision Builder의 각 영상처리 요소를 적용하였다. 에지탐색, 기하학 위치 설정, 거리측정 등의 영상처리 알고리즘을 조합하여 색과 크기가 다른 다양한 LED의 불량을 검출하는 알고리즘을 설계하였다.

웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구 (A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model)

  • 장현철;장형국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR AN AUTOMOBILE PLASTIC PART INSPECTION

  • ANDRES N.S.;MARIMUTHU R.P.;EOM Y.K.;JANG B.C.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1131-1135
    • /
    • 2005
  • Since human is vulnerable to emotional, physical and environmental distractions, most human inspectors cannot sustain a consistent 8-hour inspection in a day specifically for small components like door locking levers. As an alternative for human inspection, presented in this study is the development of a machine vision inspection system (MVIS) purposely for door locking levers. Comprises the development is the structure of the MVIS components, designed to meet the demands, features and specifications of door locking lever manufacturing companies in increasing their production throughput upon keeping the quality assured. This computer-based MVIS is designed to perform quality measures of detecting missing portions and defects like burr on every door locking lever. NI Vision Builder software for Automatic Inspection (AI) is found to be the optimum solution in configuring the needed quality measures. The proposed software has measurement techniques such as edge detecting and pattern-matching which are capable of gauging, detecting missing portion and checking alignment. Furthermore, this study exemplifies the incorporation of the optimized NI Builder inspection environment to the pre-inspection and post-inspection subsystems.

  • PDF

자동차 부품 카시트 프레임 검사를 위한 머신비전 개발 (Development of a machine vision system for automotive part car seat frame inspection)

  • 넬슨 안드레이;장봉춘
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1559-1564
    • /
    • 2011
  • 본 논문에서는 생산 현장에서 작업자가 육안으로 하고 있는 자동차 부품 카시트 프레임의 전수(全數) 검사를 위한 머신 비전 시스템의 개발에 관한 연구를 다룬다. 이러한 제안된 머신비전 검사시스템은 생산 현장에서 날로 증가하는 품질 향상에 대한 요구와 수요를 충족시키기 위해 설계되었다. 이 컴퓨터 기반의 검사시스템은 실시간으로 제품의 다양한 결함들에 대한 품질 검사를 할 수 있도록 설계되었다. 본 연구의 검사방법에 사용된 소프트웨어는 NI-LabVIEW가 사용하였으며, LabVIEW Vision 이미지 함수를 사용하여 검사 프로그램을 개발하였다. 개발된 검사 알고리즘은 생산 부품의 실시간 검사에 적용 될 수 있으며, 검사 영역과 설정 값을 비전 시스템 운용자가 설정할 수있도록 프로그램이 만들어져 검증되었다. 제안된 검사시스템은 카시트 프레임 검사를 성공적으로 수행하였다.

차량용 싱킹시트의 용접품질 비젼 검사 시스템 개발 (Development of Welding Quality Vision Inspection System for Sinking Seat)

  • 윤상환;김한종;문상인;김성관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1553-1558
    • /
    • 2007
  • This paper presents a vision based autonomous inspection system for welding quality control of car sinking seat. In order to overcome the precision error that arises from a visible inspection by operator in the manufacturing process of a car sinking seat, this paper proposes the MVWQC (machine vision based welding quality control) system. This system consists of the CMOS camera and NI machine vision system. The image processing software for the system has been developed using the NI vision builder system. The geometry of welding bead, which is the welding quality criteria, is measured by using the captured image with median filter applied on it. Experiments have been performed to verify the proposed MVWQC of car sinking seat.

  • PDF

컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적 (The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information)

  • 홍승범
    • 한국항공운항학회지
    • /
    • 제18권2호
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.

단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템 (Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling)

  • 이주학;강동원;배재혁;신윤호;최진승;탁계래
    • 한국운동역학회지
    • /
    • 제24권2호
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.