• 제목/요약/키워드: Vision Based System

Search Result 1,699, Processing Time 0.031 seconds

2-Stage Detection and Classification Network for Kiosk User Analysis (디스플레이형 자판기 사용자 분석을 위한 이중 단계 검출 및 분류 망)

  • Seo, Ji-Won;Kim, Mi-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2022
  • Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.

Evaluative Study of Solar School Project in Kenya and Uganda (솔라스쿨 활용 교육 지원 사업 평가 연구 : 케냐와 우간다의 사례)

  • Suh, Soonshik
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.245-253
    • /
    • 2019
  • To evaluate the achievements of the Solar School Project that has been implemented in twelve African countries since 2013, a case study was implemented in Kenya and in Uganda to investigate networking activities, student accessibility to computers, the frequency of student computer use, the extent to which teaching quality was improved by the enhanced accessibility to ICT-based teaching and learning practices. The results showed the followings. First, Solar Schools have significantly improved the rates of enrollment, transferring, and school attendance. Second, Solar Schools have organized local and invitational training programs to build the capacities of teachers. Third, Solar Schools have facilitated change in neighboring schools and local communities. Fourth, the participants are required to have a clear vision, take ownership of the project, and make a commitment to continuing their individual efforts toward empowerment.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Development of a real-time surface image velocimeter using an android smartphone (스마트폰을 이용한 실시간 표면영상유속계 개발)

  • Yu, Kwonkyu;Hwang, Jeong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.469-480
    • /
    • 2016
  • The present study aims to develop a real-time surface image velocimeter (SIV) using an Android smartphone. It can measure river surface velocity by using its built-in sensors and processors. At first the SIV system figures out the location of the site using the GPS of the phone. It also measures the angles (pitch and roll) of the device by using its orientation sensors to determine the coordinate transform from the real world coordinates to image coordinates. The only parameter to be entered is the height of the phone from the water surface. After setting, the camera of the phone takes a series of images. With the help of OpenCV, and open source computer vision library, we split the frames of the video and analyzed the image frames to get the water surface velocity field. The image processing algorithm, similar to the traditional STIV (Spatio-Temporal Image Velocimeter), was based on a correlation analysis of spatio-temporal images. The SIV system can measure instantaneous velocity field (1 second averaged velocity field) once every 11 seconds. Averaging this instantaneous velocity measurement for sufficient amount of time, we can get an average velocity field. A series of tests performed in an experimental flume showed that the measurement system developed was greatly effective and convenient. The measured results by the system showed a maximum error of 13.9 % and average error less than 10 %, when we compared with the measurements by a traditional propeller velocimeter.

Rotation Invariant 3D Star Skeleton Feature Extraction (회전무관 3D Star Skeleton 특징 추출)

  • Chun, Sung-Kuk;Hong, Kwang-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.836-850
    • /
    • 2009
  • Human posture recognition has attracted tremendous attention in ubiquitous environment, performing arts and robot control so that, recently, many researchers in pattern recognition and computer vision are working to make efficient posture recognition system. However the most of existing studies is very sensitive to human variations such as the rotation or the translation of body. This is why the feature, which is extracted from the feature extraction part as the first step of general posture recognition system, is influenced by these variations. To alleviate these human variations and improve the posture recognition result, this paper presents 3D Star Skeleton and Principle Component Analysis (PCA) based feature extraction methods in the multi-view environment. The proposed system use the 8 projection maps, a kind of depth map, as an input data. And the projection maps are extracted from the visual hull generation process. Though these data, the system constructs 3D Star Skeleton and extracts the rotation invariant feature using PCA. In experimental result, we extract the feature from the 3D Star Skeleton and recognize the human posture using the feature. Finally we prove that the proposed method is robust to human variations.

Study on Location Decisions for Cloud Transportation System Rental Station (이동수요 대응형 클라우드 교통시스템 공유차량 대여소 입지선정)

  • Shin, Min-Seong;Bae, Sang-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Recently, traffic congestion has become serious due to increase of private car usages. Carsharing or other innovative public transportation systems were developed to alleviate traffic congestion and carbon emissions. These measures can make the traffic environment more comfortable, and efficient. Cloud Transportation System (CTS) is a recent carsharing model. User can rent an electronic vehicles with various traffic information through the CTS. In this study, a concept, vision and scenarios of CTS are introduced. And, authors analyzed the location of CTS rental stations and estimated CTS demands. Firstly, we analyze the number of the population, employees, students and traffic volume in study areas. Secondly, the frequency and utilization time are examined. Demand for CTS in each traffic zone was estimated. Lastly, the CTS rental station location is determined based on the analyzed data of the study areas. Evaluation standard of the determined location includes accessibility and density of population. And, the number of vehicles and that of parking zone at the rental station are estimated. The result suggests that Haewoondae Square parking lot would be assigned 11 vehicles and 14.23 parking spaces and that Dongbac parking lot be assigned 7.9 vehicles and 10.29 parking spaces. Further study requires additional real-time data for CTS to increase accuracy of the demand estimation. And network design would be developed for redistribution of vehicles.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

A study on the development of surveillance system for multiple drones in school drone education sites (학내 드론 교육현장의 다중드론 감시시스템 개발에 관한 연구)

  • Jin-Taek Lim;Sung-goo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.697-702
    • /
    • 2023
  • Recently, with the introduction of drones, a core technology of the 4th industrial revolution, various convergence education using drones is being conducted in school education sites. In particular, drone theory and practice education is being conducted in connection with free semester classes and career exploration. The drone convergence education program has higher learner satisfaction than simple demonstration and practice education, and the learning effect is high due to direct practical experience. However, since practical education is being conducted for a large number of learners, it is impossible to restrict and control the flight of a large number of drones in a limited place. In this paper, we propose a monitoring system that allows the instructor to monitor multiple drones in real time and learners to recognize collisions between drones in advance when multiple drones are operated, focusing on education operated in schools. The communication module used in the experiment was equipped with GPS in Murata LoRa, and the server and client were configured to enable monitoring based on the location data received in real time. The performance of the proposed system was evaluated in an open space, and it was confirmed that the communication signal was good up to a distance of about 120m. In other words, it was confirmed that 25 educational drones can be controlled within a range of 240m and the instructor can monitor them.

A Study on Basic Plan for Upscaling Environmental Conservation Value Assessment Map(ECVAM) of National Land in South Korea (대축척 국토환경성평가지도 작성방안 연구)

  • Lee, Moung-Jin;Jeon, Seong-Woo;Lee, Chong-Soo;Kang, Byung-Jin;Song, Won-Kyong
    • Journal of Environmental Policy
    • /
    • v.6 no.3
    • /
    • pp.115-145
    • /
    • 2007
  • This study was performed for developing upscaling Environmental Conservation Value Assessment Map(ECVAM) of National Land in South Korea and presenting the application method of ECVAM. This ECVAM adopted the least indicator method and uses a Geographic Information System(GIS). This map is made through evaluation of 67 items. As a result, the construction of ECVAM was defined as a process of identifying land use to scientifically assess the physical and environmental value of land and classify conservation value into several grades for the sustainable management of environmental resources. After applying ECVAM criteria of five degrees to the whole of study area, Grade I, showing the highest conservation value, accounted for 29.3% by land area of ECVAM. Grades II, III, IV and V likewise accounted for, respectively, 21.7%, 17.2%, 7.1% and the lowest conservation value of 24.7%. other result, ECVAM and land suitability assessment agreement rate is Grade I 33.05%, Grades II, III, IV and V likewise accounted for 12.92%, 15.05%, 36.93% and last value of 53.28% This study set up "the realization of the improvement ECVAM" as the vision of the advancing strategy. In order to accomplish the vision, this study established the purpose as follow; constructing strategic assessment value relation to ECVAM based on knowledge, arranging the foundation to upscaling assessment value And this study devised preparatory plans to achieve the vision and the purpose as next; construction on base theme map by 1:5,000 scalie, base on land register theme map and precision land cover map. Therefore, for applying the result of this study to the upscaling Environmental Conservation Value Assessment Map(ECVAM), it considers regularly the systematic categorization of preceding item, consideration issue of national environmental geographic information using the ECVAM.

  • PDF

Improved CS-RANSAC Algorithm Using K-Means Clustering (K-Means 클러스터링을 적용한 향상된 CS-RANSAC 알고리즘)

  • Ko, Seunghyun;Yoon, Ui-Nyoung;Alikhanov, Jumabek;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.315-320
    • /
    • 2017
  • Estimating the correct pose of augmented objects on the real camera view efficiently is one of the most important questions in image tracking area. In computer vision, Homography is used for camera pose estimation in augmented reality system with markerless. To estimating Homography, several algorithm like SURF features which extracted from images are used. Based on extracted features, Homography is estimated. For this purpose, RANSAC algorithm is well used to estimate homography and DCS-RANSAC algorithm is researched which apply constraints dynamically based on Constraint Satisfaction Problem to improve performance. In DCS-RANSAC, however, the dataset is based on pattern of feature distribution of images manually, so this algorithm cannot classify the input image, pattern of feature distribution is not recognized in DCS-RANSAC algorithm, which lead to reduce it's performance. To improve this problem, we suggest the KCS-RANSAC algorithm using K-means clustering in CS-RANSAC to cluster the images automatically based on pattern of feature distribution and apply constraints to each image groups. The suggested algorithm cluster the images automatically and apply the constraints to each clustered image groups. The experiment result shows that our KCS-RANSAC algorithm outperformed the DCS-RANSAC algorithm in terms of speed, accuracy, and inlier rate.