• Title/Summary/Keyword: Vision Based Sensor

Search Result 425, Processing Time 0.028 seconds

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

Development of a Horse Robot for Indoor Leisure Sports (실내 레저 스포츠를 위한 승마 로봇의 개발)

  • Lee, Wonsik;Lee, Youngdae;Moon, Chanwoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.161-166
    • /
    • 2014
  • Recently, indoor sports simulator equipped with virtual reality devices, like screen golf system, are riding high. There have been many attempts to develop the indoor simulator systems which can make people enjoy exercises in various sports area. A real horseback riding could not have been popularized, because of the cost involved, difficulty to learn and its dangerousness. In this research, a robotic horseback riding platform based on parallel mechanism and virtual reality device is proposed. The proposed platform provides realistic riding feels and various levels of riding difficulty. The equipped motion capture system with a vision sensor enables riders to correct their riding posture based on expert's one. The developed horseback riding platform make it possible to enjoy a horseback riding in all weather, and also can be used for systematic horseback riding training.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.

Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior (지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.86-99
    • /
    • 2011
  • Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Verification of Long-distance Vision-based Displacement Measurement System (장거리 영상기반 변위계측 시스템 검증)

  • Kim, Hong-Jin;Heo, Suk-Jae;Shin, Seung-Hoon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2018
  • The purpose of this study is to verify the long - range measurement performance for practical field application of VDMS. The reliability of the VDMS was verified by comparison with the existing monitoring sensor, GPS, Accelerometer and LDS. It showed the ability to accurately measure the dynamic displacement by tracking a motion of free vibration of target. And using the PSD function of measured data, the results in the frequency domain were also analyzed. We judged that VDMS is able to identify the higher system mode and has sufficient reliability. Based on the reliability verification, we conducted tests for long-distance applicability for actual application of VDMS. The distance from the stationary target model structure was increased by 50m interval, and the maximum distance was set to 400m. From the distance of 150m, the image obtained by the commercial camcorder has an error in the analysis, so the measured displacement comparison was performed between the LDS and the refractor telescope measurement results. In the measurement results of the displacement area of VDMS, the data validity was deteriorated due to the data shift by the external force and the quality degradation of the enlarged image. However, even under the condition that the effectiveness of the displacement measurement data of VDMS is low, the first mode characteristic included in the free vibration of the object is clearly measured. If the influence from the external environment is controlled and stable data is collected, It is judged that reliability of long-distance VDMS can be secured.

Fase Positive Fire Detection Improvement Research using the Frame Similarity Principal based on Deep Learning (딥런닝 기반의 프레임 유사성을 이용한 화재 오탐 검출 개선 연구)

  • Lee, Yeung-Hak;Shim, Jae-Chnag
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.242-248
    • /
    • 2019
  • Fire flame and smoke detection algorithm studies are challenging task in computer vision due to the variety of shapes, rapid spread and colors. The performance of a typical sensor based fire detection system is largely limited by environmental factors (indoor and fire locations). To solve this problem, a deep learning method is applied. Because it extracts the feature of the object using several methods, so that if a similar shape exists in the frame, it can be detected as false postive. This study proposes a new algorithm to reduce false positives by using frame similarity before using deep learning to decrease the false detection rate. Experimental results show that the fire detection performance is maintained and the false positives are reduced by applying the proposed method. It is confirmed that the proposed method has excellent false detection performance.

A Study on the Analysis and Verification of Evaluation system for the Usability Evaluation of Purpose-Based XR Devices (목적 기반 XR 디바이스의 사용성 평가를 위한 평가체계 분석 및 검증 연구)

  • Young Woo Cha;Gi Hyun Lee;Chang Kee Lee;Sang Bong Lee;Ohung Kwon;Chang Gyu Lee;Joo Yeoun Lee;JungMin Yun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.56-64
    • /
    • 2024
  • This study aims to compare and evaluate the usability of domestic and overseas XR devices. With the recent release of 'Apple Vision Pro', interest in the XR field is increasing rapidly. XR devices are being used in various fields such as defense, medical care, education, and entertainment, but the evaluation system for evaluating usability is still insufficient. Therefore, this study aims to derive improvements in domestic equipment through comparative evaluation of usability for two HMD-type devices and one glasses-type device that are released. In order to conduct the study, 20 participants in their 20s to 30s who were interested in XR devices and had no visual sensory organ-related disabilities were evaluated by wearing VR equipment. As a quantitative evaluation, electromyography through an EMG sensor and the device and body temperature of the device through a thermal imaging camera were measured. As a qualitative evaluation, the safety of wearing, ease of wearing, comfort of wearing, and satisfaction of wearing were evaluated. As a result of comparing the usability of the devices based on the results, it was confirmed that domestic HMD-type device needs improvement in the strap part.