• 제목/요약/키워드: Visible light resin

검색결과 76건 처리시간 0.022초

아르곤 레이저를 이용한 광중합 수복재의 물리적 성질에 관한 연구 (A STUDY ON THE PHYSICAL PROPERTIES OF RESTORATIVE MATERIALS FOR PHOTO-POLYMERIZATION OF ARGON LASER)

  • 주상호;최형준;김성오;이종갑
    • 대한소아치과학회지
    • /
    • 제25권2호
    • /
    • pp.368-382
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the results of argon laser for 5 seconds, argon laser for 10 seconds, and visible light for 40 seconds photo-polymerization in compressive strength, microhardness, curing depth, temperature rising during polymerization, and polymerization shrinkage. Hybrid type composite resin(Z-100) and compomer(Dyract) were used to be compared. The compressive strength was measured by an Instron(1mm/min cross head speed) in 60 specimens and the microhardness of the surface was expressed by Vickers Hardness Number(VHN) in 30 specimens. The curing depth was evaluated comparing the different values of upper and lower VHN according to irradiation time and thickness for the light source polymerization in 60 specimens. The temperature rising during photopolymerization was observed by the temperature change with thermocouple sensitizer beneath 40 specimens at the argon laser for 10 seconds and visible light 40 seconds irradiation. The polymerization shinkage was evaluated by calculating the decrease of % volume by using a dilatometer in 30 specimens. The results were as follows ; 1. In the case of compressive strength, the argon laser polymerization groups were higher than visible light group in Z-100 (p<0.05). In Dyract, the argon laser 5 seconds group did not show a significant difference with the visible light 40 seconds group. The argon laser 10 seconds group showed the markedly low value when compared with other groups (p<0.05) 2. In microhardness, Z-100 was better than Dyract when comparing by VHNs (p<0.05); however, there was not a significant difference between two materials in the visible light 40 seconds group and the argon laser 10 seconds group. 3. In the study of curing depth, Z-100 showed the consistent polymerization in argon laser irradiation because there was no difference in the VHN decrease according to the thickness change. Over the thickness control, the results did not show a significant difference between visible light and argon laser group in Z-100; however, in the case of Dyract, the visible light 40 seconds group was better than the argon laser groups(p<0.05). 4. There was a significant difference between the two materials in temperature rising during polymerization (p<0.05), but not a significant difference between irradiation times, 5. There was not a significant difference between the two materials in polymerization shrink age. The argon laser 5 seconds group was smaller than the other groups (p<0.05). It could be concluded that Z-100 polymerization was recommended to use the argon laser for reduction of the irradiation time while Dyract was recommended to use the visible light polymerization.

  • PDF

새로운 광증감제의 양에 따른 치과용 Bis-GMA 복합수지의 중합효율 (Photopolymerization Efficiency of Bis-GMA Dental Resin Composites with New Photosensitizers)

  • 선금주;정종현
    • 치위생과학회지
    • /
    • 제9권2호
    • /
    • pp.189-195
    • /
    • 2009
  • 치과용 가시광선 종합형 복합수지의 광중합효율을 높이기 위해 합성한 bis-GMA 레진에 2종의 새로운 광중감제인 PD, DA를 넣고 현재 가장 많이 사용되고 있는 광중감제인 CQ와 조사시간 및 광중감제의 양을 증가시키며 광중합효율을 비교한 결과 다음과 간은 결론을 얻었다. 1. Bis-GMA의 합성여부를 적외선 흡수 분광법, 핵자기공명 흡수법 등 분광학적인 방법으로 확인하였으며 핵자기 공명 흡수법으로 확인한 결과 이성질체가 존재함을 알 수 있었다. 2. 조사시간이 증가됨에 따라 광중감제의 종류에 관계없이 광중합효율이 점차 증가되었으며, 약 60초까지 조사였을 때에는 광중합효율이 급격히 증가되었으나 그 이상 조사하여도 광중합효율이 크게 증가되지 않았다. 3. 같은 시간 조사하였을 경우 대체적으로 광중합효율이 증가되었으나 CQ와 DA의 경우는 3.0 mol% 첨가하였을 때에 비해 6.0 mol% 첨가되었을 때의 광중합효율이 오히려 더 낮게 나타나는 양상을 보였다. 4. 같은 시간동안 조사하고, 같은 양의 광중감제를 첨가하였을 경우 DA < CQ < PD 순으로 광중합효율이 높게 나타나서 CQ에 비해 PD를 첨가하였을 때의 광중합효율이 높게 나타났다. 5. 이상의 결과로부터 PD가 CQ를 대체할 수 있는 효율이 좋은 새로운 광중감제로서 사용될 가능성을 보여주었다.

  • PDF

가시광선(可視光線)의 치질투과(齒質透過) 후(後) 복합(複合)레진 경도(硬度)에 미치는 영향(影響)에 관(關)한 연구(硏究) (A STUDY ON THE CURING EFFECT OF COMPOSITE RESIN BY VISIBLE LIGHT THROUGH TOOTH SUBSTANCE)

  • 방상훈;박상진;민병순;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제12권1호
    • /
    • pp.85-93
    • /
    • 1986
  • The purpose of this study was to investigate the curing effect of visible light through tooth substance, 0.5mm, 1.0mm thickness of enamel and dentin were prepared. Experimental specimen were made by Bisfil M & Silux packing into cylindrical brass mold 6.0mm in diameter, 2.0mm and 3.0mm, in height. All specimen were irradiated by visible light (Grip type) model No. SDL-50 Shofu Co.) for 30 seconds through tooth substance. Experimental groups were classified into enamel group (group 1) and dentin group (group 2) according to the thickness of tooth materials and then were divided into 2 subgroups (0.5mm group and 1.0mm group). In experimental groups, visible light irradiated to the specimen through either 0.5mm in thick or 1.0mm in think of tooth material. In Control group specimen were prepared by direct irradiation on the specimen surface of visible light without through tooth substance. The hardness was measured with a Barcol hardness tester (Barber-Colman Co. U.S.A.) for each prepared specimen. The results were as follows: 1. In control group, there were higher hardness values than those of in experimental group. 2. In experimental groups, 0.5mm groups had higher hardness values than 1.0mm groups did. 3. The hardness value at top surface of the specimen were higher than the hardness of bottom surface in each group. 4. Bisfil M had higher hardness values than Silux. 5. In all specimen of 3.0mm height polymerization effect was not occurred at bottom surface except Bisfil M in control group.

  • PDF

각각의 광조사기가 복합레진의 미세경도와 미세누출에 미치는 영향 (EFFECT OF EACH LIGHT CURING UNITS ON THE MICROHARDNESS AND MICROLEAKAGE OF COMPOSITE RESIN)

  • 정유진;이희주;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제29권1호
    • /
    • pp.58-67
    • /
    • 2004
  • The objectives of this study was to evaluate current visible light curing units regarding microhardness and microleakage. Fourty samples of composite resin(Z-250, 3M) were cured by different light curing units (Flipo, LOKKI; Credi II, 3M; XL 3000, 3M: Optilux 500, Demetron) in acrylic blocks. Microhardness was measured using a calibrated Vickers indenter on both top and bottom surfaces after 24 hours of storage in air at room temperature. Class V cavities were prepared on buccal and lingual surfaces of fourty extracted human molars. Each margin was on enamel and dentin/cementum. Composite resin(Z-250, 3M) was filled in cavities and cured by four different light curing units (Flipo, LOKKl; Credi II, 3M; XL 3000, 3M: Optilux 500, Demetron). The results of this syudy were as follows: Microhardness 1. Flipo showed low microhardness compared to Optilux 500, Credi II significantly in upper surface. Flipo didn't show a significant difference compared to XL 3000. 2. The microhardness resulting from curing with Flipo was lower than that of others on lower surfaces. Microleakage 1. Dentin margin showed significantly high dye penetration rate than enamel margin in all groups(p<0.05). 2. No significant differences were found on both enamel and dentin margin regarding curing units.

광중합 레진의 색 안정성과 미세경도에 관한 연구 (A STUDY ON THE COLOR STABILITY AND MICROHARDENSS OF LIGHT CURING RESINS)

  • 오세홍;임미경;조혜원;이광희
    • Restorative Dentistry and Endodontics
    • /
    • 제17권1호
    • /
    • pp.126-133
    • /
    • 1992
  • Tooth colored resin restorative materials are widely used in anterior teeth restorations. The color instability of resin was the main cause of failure in resin restorations. The purpose of this study was to investigate color stability and microhardness of serval visible light curing resins. Colorimetric measurements(Tokyo Denshoku Co., Japan) and microhardness tests(Matusuzawa, MXT 70, Japan) were made on six composite resins before and after controlled immersion treatments. The six composite resins were BIS - FILM(BISCO, USA), Durafill(Kulzer, Germany), Helioprogess(VIVADENT, Germany), Palfique(TOKUYAMA SODA, Japan), Silux(3M, USA), Photoclearfil(KURARAY, Japen). Six light curing resins showed significant color change after 2 weeks. Palfique exhibited the hightest $dE^*$ values and Helio progress presented the lowest $dE^*$ values. Photoclearfil showed the highest microhardness value. Durafill and Helio progress showed lower microhardness values. Microhardness values were decreased after 8 weeks in Bisfil, Palfique light, and Photoclearfil.

  • PDF

브라켓 접착시 광중합방식에 따른 전단결합강도와 파절양상 비교 (The shear bond strength and adhesive failure pattern in bracket bonding with different light-curing methods)

  • 신재호;임용규;이동렬
    • 대한치과교정학회지
    • /
    • 제34권4호
    • /
    • pp.333-342
    • /
    • 2004
  • 기존의 가시광선 중합기와 비교해서 plasma are light와 LED) 방식의 중합기를 이용해 브라켓을 치아표면에 접착한 후 탈락시키는 실험을 시행해 각각의 중합방식별로 전단결합강도와 접착파절양상을 비교함으로써 임상에서의 유용성을 평가하고자 하였다. 교정치료를 위해 발거한 상, 하악 소구치 60개를 윈통형의 레진블록에 매몰하여 시편을 제작하였다. 광중합형 접착레진인 Transbond XT를 이용하여 광중합 방식별로 조건(가시광선 중합기는 40초, LED방식의 중합기는 20춘, 그리고 plasma arc light 방식의 중합기는 3초)에 따라 브라켓을 접착한 후 만능물성실험기로 전단결합강도를 측정하고 브라켓 기저면을 광학현미경으로 관찰해 접착파절양상을 관찰하여 다음과 같은 결과를 얻었다. 1. 가시광선 중합방식과 LED 중합방식으로 중합시킨 군간에 전단결합강도의 유의성 있는 차이는 없지만 plasma arc Light방식으로 중합시킨 군은 앞의 두 군에 비해 유의성이 있게 작은 간을 나타내었다(p>0.05). 2. 가시광선 중합방식으로 중합한 군과 LED방식을 이용한 군에서는 파절양상이 거의 유사하게 나타났다. 두 군 모두 잔류접착제가 치아면에만 있는 경우가 제일 적은 비율을 도였으며 브라켓 기저면에 50% 이상의 집착제가 남아 있는 양상이 더 큰 비율을 보였다. 3. Plasma arc light 로 중합시킨 경우에는 접착제가 브라켓 기저면에 50% 이하로 남아있는 양상이 큰 비율로 나타났으며 잔류 접착제 전체가 치아면에 남아 있는 경우는 15%였다. 이상의 실험결과 plasma arc light를 이용한 중합 방식이 가시광선이나 LED 방식을 이용한 중합 방식에 비해 유의성 있게(p>0.05) 낮은 전단결합강도를 보였으나 세 방식 모두 인상적으로 사용하기에 충분한 전단결합강도를 보여 유용하게 사용할 수 있음을 알 수 있었다.

복합레진의 광중합 전·후와 shade guide의 색차 비교 (COLOR DIFFERENCES BETWEEN RESIN COMPOSITES BEFORE- AND AFTER-POLYMERIZATION, AND SHADE GUIDES)

  • 전이주;조성식;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제24권2호
    • /
    • pp.299-309
    • /
    • 1999
  • The composite resin, due to its esthetic qualities, is considered the material of choice for restoration of anterior teeth. With respect to shade control, the direct-placement resin composites offer some distinct advantages over indirect restorative procedures. Visible-light-cured (VLC) composites allow dentists to match existing tooth shades or to create new shades and to evaluate them immediately at the time of restoration placement. Optimal intraoral color control can be achieved if optical changes occurring during application are minimized. An ideal VLC composite, then, would be one which is optically stable throughout the polymerization process. The shade guides of the resin composites are generally made of plastic, rather than the actual composite material, and do not accurately depict the true shade, translucency, or opacity of the resin composite after polymerization. So the numerous problems associated with these shade guides lead to varied and sometimes unpredictable results. The aim of this study was to assess the color changes of current resin composite restorative materials which occur as a result of the polymerization process and to compare the color differences between the shade guides provided with the products and the actual resin composites before- and after-polymerization. The results obtained from this investigation should provide the clinician with information which may aid in improved color match of esthetic restoration. Five light activated, resin-based materials (${\AE}$litefil, Amelogen Universal, Spectrum TPH VeridonFil-Photo, and Z100) and shade guides were used in this study. Three specimens of each material and shade combination were made. Each material was condensed inside a 1.5mm thick metal mold with 10mm diameter and pressed between glass plates. Each material was measured immediately before polymerization, and polymerized with Curing Light XL 3000 (3M Dental products, USA) visible light-activation unit for 60 seconds at each side. The specimens were then polished sequentially on wet sandpaper. Shade guides were ground with polishing stones and rubber points (Shofu) to a thickness of approximately 1.5mm. Color characteristics were performed with a spectrophotometer (CM-3500d, Minolta Co., LTD). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$ and $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E{^*}ab$) of resin composites before the polymerization process and shade guides using the post-polishing color of the composite as a control, CIE standard D65 was used as the light source. The results were as follows. 1. Each of the resin composites evaluated showed significant color changes during light-curing process. All the resin composites evaluated except all the tested shades of 2100 showed unacceptable level of color changes (${\Delta}E{^*}ab$ greater than 3.3) between pre-polymerization and post-polishing state. 2. Color differences between most of the resin composites tested and their corresponding shade guides were acceptable but those between C2 shade of ${\AE}$litefil and IE shade of Amelogen Universal and their respective shade guides exceeded what is acceptable. 3. Comparison of the mean ${\Delta}E{^*}ab$ values of materials revealed that Z100 showed the least overall color change between pre-polymerization and post-polishing state followed by ${\AE}$litefil, VeridonFil-Photo, Spectrum TPH, and Amelogen Universal in the order of increasing change and Amelogen Universal. Spectrum TPH, 2100, VeridonFil-Photo and ${\AE}$litefil for the color differences between actual resin and shade guide. 4. In the clinical environment, the shade guide is the better choice than the shade of the actual resin before polymerization when matching colors. But, it is recommended that custom shade guides be made from resin material itself for better color matching.

  • PDF

The effects of custom tray material on the accuracy of master cast reproduction

  • Kim Hyun-Kyung;Chang Ik-Tae;Heo Seong-Joo;Koak Jai-Young
    • 대한치과보철학회지
    • /
    • 제39권3호
    • /
    • pp.282-296
    • /
    • 2001
  • The accuracy of master cast reproduction by a polyvinylsiloxane impression material using two visible-light curing resin and autopolymerizing polymethyl methacrylate resin custom tray material was investigated. Custom trays were fabricated from a master cast that had three index points marked on both inner and outer vestibules and then poured in yellow stone. The distance between the reproduced index points were measured to be ${\pm}0.001mm$ with a measuring microscope and the algebraic norms calculated for each tray material. No differences were found in the algebraic norms of inner and outer dimensions for upper tray impressions by ANOVA(p>0.05). However, T-test revealed that there were differences between upper and lower impressions and Tukey's hsd test revealed that in lower tray impressions, the Palatray in inner, the Lightplast in outer dimensions respectively were different from other materials. The index points reproduced on the casts compared with the master cast, were closer together for upper tray impressions. All four tray materials produced acceptable casts, 1. Algebraic norms of inner and outer dimensions of the test casts for upper trays were not statistically different irrespective of materials.(P>0.05) 2. T-test showed that there were differences between means with upper and lower trays especially in outer dimension.(P>0.05) 3. But, algebraic norms of inner and outer dimensions of the test casts for lower trays were statistically different between materials. 4. Palatray XL in inner, Lightplast-platten in outer dimensions respectively for lower trays were different from other materials, but, the nearest to the original model.

  • PDF

아르곤 레이저의 소아치과에서의 임상적 적용 (CLINICAL APPLICATION OF ARGON LASER IN PEDIATRIC DENTISTRY)

  • 이미나;이상훈;김종철
    • 대한소아치과학회지
    • /
    • 제24권1호
    • /
    • pp.139-147
    • /
    • 1997
  • Argon laser used in this case report, is special in having two wavelength of 488, 514nm blue-green visible light spectrum. Blue light is used for composite resin polymerization and caries detection. Green light is used for soft tissue surgery and coagulation. Maximum absorption of this laser light occurs in red pigmentation such as hemoglobin. The argon laser may be well-suited for selective destruction of blood clots and hemangioma with minimal damage to adjacent tissues. Argon laser light penetrates tissue to the 1 mm depth, so its thermal intensity is lower than $CO_2$ laser light. Also, due to its short wavelength it can be focused in a small spot and even single gene can be excised by this laser and microscopy. After applicating argon laser to 4 patient for surgical procedure and to 1 patient for curing the composite resin, following results were obtained. 1. Improved visibility were gained due to hemostasis and no specific technique were needed according to easy recontouring of the tissue. 2. Ability to use by contact mode, tactile sense was superior but tissue dragability and accumulation of tissue on the tip needed sweeping motion. 3. Additive local anesthetic procedure was needed. 4. No suture and less curing time reduced chair time, this made argon laser available in pediatric dentistry.

  • PDF

Active components delivery rate from acrylic resin maxillary surgical obturator: Part I

  • Al-Kaabi, Arshad;Hamid, Mohammed A.
    • Advances in materials Research
    • /
    • 제9권2호
    • /
    • pp.109-114
    • /
    • 2020
  • The purpose of this study was to observe the trend of compounds release from acrylic resin oral prosthesis when used for drug delivery as well as a restoration. In this study, 10 specimens of heat-cured polymethylmethacrylate material were prepared and loaded with methylene blue biological stain. The specimens were then submerged in vials with 5 ml distilled water for 24 hours. The extraction procedure continued for 4 days, each day the specimens were immersed in another 5 ml distilled water vial. All extracted solutions were analyzed by visible light spectroscopy for absorbance comparison. The statistical results showed that the absorbance values were significantly different in the first day of extraction than the following days. However, there was no statistical difference among the 2nd, 3rd and 4th days of extraction. Biological stain loading to acrylic resin at the mixing stage, and then after extraction in distilled water, showed a burst release during the first day followed by a constant release during the following few days.