• 제목/요약/키워드: Visible light photocatalytic

검색결과 226건 처리시간 0.027초

Visible-light Photocatalytic Activity of BiOCl/Bi3O4Cl Nanocomposites

  • Gao, Bifen;Chakraborty, Ashok Kumar;Yang, Ji-Min;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1941-1944
    • /
    • 2010
  • The heterojunction structures of BiOCl/$Bi_3O_4Cl$, exhibiting considerable visible-light photocatalytic efficiency, were prepared by a simple wet-chemical process at ambient condition. The prepared nanocomposites were characterized by XRD, TEM, and UV-visible diffuse reflectance spectra. Under visible light (${\lambda}\geq$420 nm) irradiation, BiOCl/$Bi_3O_4Cl$ exhibited an enhanced photocatalytic activity in decomposing 2-propanol (IP) in gas phase and salicylic acid (SA) in aqueous solution, whereas the bare BiOCl and $Bi_3O_4Cl$ showed negligible activities. It is deduced that the remarkable visible-light photocatalytic activity of the BiOCl/$Bi_3O_4Cl$ originates from the hole $(h^+)$ transfer between VB of the $Bi_3O_4Cl$ and BiOCl semiconductors.

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.

산소 결함형 $TiO_2$ 분말의 가시광에 대한 광촉매 활성 (Photocatalytic Activity of $TiO_2$ Powder with an Oxygen Deficiency in the Visible-Light Region)

  • 양천회
    • 한국응용과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2007
  • It prepared the $TiO_2$ powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium $dioxide(TiO_2)$ by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase $TiO_2$ powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the $TiO_2$ powder for the visible light region, which also can be easily produced by wet process. The wet process $TiO_2$ absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated $TiO_2$. The AH-380 $TiO_2$ powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated $TiO_2$ powder.

Photocatalysis of Low Concentration of Gaseous-Phase Benzene Using Visible-Light Irradiated N-doped and S-doped Titanium Dioxide

  • Jo, Wan-Kuen;Kim, Jong-Tae
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Studies on visible-light-driven photocatalysis of air pollutants at indoor air quality (IAQ) levels have been limited. Current study investigated visible-light derived photocatalysis with N-doped and S-doped titanium dioxide ($TiO_2$) for the control of benzene at indoor levels. Two preparation processes were employed for each of the two types of photocatalyst: urea-Degussa P-25 $TiO_2$ and titania-colloid methods for the N-doped $TiO_2$; and titanium isopropoxid- and tetraisopropoxide-thiourea methods for the S-doped $TiO_2$. Furthermore, two coating methods (EDTA- and acetylacetone-dissolving methods) were tested for both the N-doped and S-doped $TiO_2$. The two coating methods exhibited different photocatalytic degradation efficiency for the N-doped photocatalysts, whereas they did not exhibit any difference for the S-doped photocatalysts. In addition, the two doping processes showed different photocatalytic degradation efficiency for both the S-doped and N-doped photocatalysts. For both the N-doped and S-doped $TiO_2$, the photocatalytic oxidation (PCO) efficiency increased as the hydraulic diameter (HD) decreased. The degradation efficiency determined via a PCO system with visible-light induced $TiO_2$ was lower than that with UV-light induced unmodified $TiO_2$, which was obtained from previous studies. Nevertheless, it is noteworthy that for the photocatalytic annular reactor with the HD of 0.5 cm, PCO efficiency increased up to 52% for the N-doped $TiO_2$ and 60% for the S-doped $TiO_2$. Consequently, when combined with the advantage of visible light use over UV light use, it is suggested that with appropriate HD conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.

Fabrication of Hybrid NiO/ACF/TiO2 Composites and Their Photocatalytic Activity Under Visible Light

  • Meng, Ze-Da;Han, Sang-Bum;Kim, Doo-Hwan;Park, Chong-Yeon;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제48권3호
    • /
    • pp.211-216
    • /
    • 2011
  • Nickel oxide-doped ACF and $TiO_2$ composites (NiO/ACF/$TiO_2$) were prepared by a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, transmission electron microscopy and energy dispersive X-ray analysis. A methylene blue (MB) solution under visible light irradiation was used to determine their photocatalytic activity. Excellent photocatalytic degradation of the MB solution was observed using the $TiO_2$, Ti-ACF and NiO/ACF/$TiO_2$ composite under visible light.

Enhanced Photocatalytic Properties of Visible Light Responsive La/TiO2-Graphene Composites for the Removal of Rhodamin B in Water

  • Areerob, Yonrapach;Oh, Won-Chun
    • 대한화학회지
    • /
    • 제61권4호
    • /
    • pp.168-178
    • /
    • 2017
  • $La/TiO_2$ - graphene composites were synthesized in this study, and applied to the photocatalytic degradation of Rhodamine B (RhB) under UV-visible light irradiation. X-ray diffraction (XRD), surface analysis, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) analysis demonstrated that $La/TiO_2$ nanoparticles were well distributed on the surface of graphene, and formed the heterostructure of $La/TiO_2$-graphene. Compared to the pure $TiO_2$, $La/TiO_2$-graphene composites displayed much higher photocatalytic activities in RhB degradation under UV-visible light irradiation. The photocatalytic data of $La/TiO_2$-graphene composites exhibit extended light absorption in the visible light region, and possess better charge separation capability than that of pure $TiO_2$. The high photocatalytic activity was attributed to the composite's high adsorptivity, extended light absorption, and increased charge separation efficiency, due to the excellent electrical properties of graphene, and the large surface contact between graphene and $La/TiO_2$ nanoparticles.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

졸-겔공정/광증착법을 이용한 Ag-Doped TiO2 합성 및 광촉매 특성 (Photocatalytic Properties of the Ag-Doped TiO2 Prepared by Sol-Gel Process/Photodeposition)

  • 김병민;김정식
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.73-78
    • /
    • 2016
  • $TiO_2$ nanoparticles were synthesized by a sol-gel process using titanium tetra isopropoxide as a precursor at room temperature. Ag-doped $TiO_2$ nanoparticles were prepared by photoreduction of $AgNO_3$ on $TiO_2$ under UV light irradiation and calcinated at $400^{\circ}C$. Ag-doped $TiO_2$ nanoparticles were characterized for their structural and morphological properties by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photocatalytic properties of the $TiO_2$ and Ag-doped $TiO_2$ nanoparticles were evaluated according to the degree of photocatalytic degradation of gaseous benzene under UV and visible light irradiation. To estimate the rate of photolysis under UV (${\lambda}=365nm$) and visible (${\lambda}{\geq}410nm$) light, the residual concentration of benzene was monitored by gas chromatography (GC). Both undoped/doped nanoparticles showed about 80 % of photolysis of benzene under UV light. However, under visible light irradiation Ag-doped $TiO_2$ nanoparticles exhibited a photocatalytic reaction toward the photodegradation of benzene more efficient than that of bare $TiO_2$. The enhanced photocatalytic reaction of Ag-doped $TiO_2$ nanoparticles is attributed to the decrease in the activation energy and to the existence of Ag in the $TiO_2$ host lattice, which increases the absorption capacity in the visible region by acting as an electron trapper and promotes charge separation of the photoinduced electrons ($e^-$) and holes ($h^+$). The use of Ag-doped $TiO_2$ nanoparticles preserved the option of an environmentally benign photocatalytic reaction using visible light; These particles can be applicable to environmental cleaning applications.

Synthesis of CdSe-TiO2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

  • Lim, Chang-Sung;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1657-1661
    • /
    • 2011
  • In this study, CdSe-$TiO_2$ photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe-$TiO_2$ photocatalyst exhibited much higher photocatalytic activity than $TiO_2$ both under irradiation of UV light as well as visible light.

Microwave Assisted Synthesis of SnS Decorated Graphene Nanocomposite with Efficient Visible-Light-Driven Photocatalytic Applications

  • Wang, Jun-Hui;Zeng, Yi-Kai;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.641-649
    • /
    • 2020
  • A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.