• Title/Summary/Keyword: Visibility impairment

Search Result 33, Processing Time 0.018 seconds

A Study on the Development of Fire Alarm System with Evacuation Lighting and Voice Alarm Functions (피난조명 및 음성경보 기능을 내장한 화재경보시스템 개발에 관한 연구)

  • Lee, Gun-Ho;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.25-34
    • /
    • 2018
  • This study investigated the development of a fire alarm system with evacuation lighting and voice alarm functions. The performance of a fire detector and system with independently built-in evacuation lighting and voice alarm functions was confirmed for early recognition of fire and to allow visibility of the evacuation route in the event of fire. This new system satisfied model recognition and product testing technological standards with 1.62 lx average illumination, 89.7 dB average sound and 86.1 dB average voice. From additionally testing the evacuation performance of this new system, it was confirmed that the evacuation time decreased by 63.08% to 67.82% under the experimental conditions compared to conventional systems. The new system can minimize fire damage by setting off voice alarms to prevent failure of fire recognition and by flashing emergency lighting to secure the minimum required visibility range for evacuation. Therefore, it is considered that it will be utilized as a fire alarm system with appropriateness and usefulness by considering people with hearing or visual impairment.

Mobile Web UI/UX Research for Low Vision in Visually Handicapped People (저시력 장애인을 위한 모바일 웹 UI/UX 연구)

  • Song, Seung-hun;Kim, Eui-jeong;Kang, Shin-cheon;Kim, Chang-suk;Chung, Jong-in
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.391-394
    • /
    • 2017
  • Persons with low vision impairment refers to visual and visual impairments that can not be remedied by medical or optical methods due to inherited or acquired eye disease. People with low vision impairments account for more than 240 million people in the world and have only a few remaining eyesight. We will discuss the improvement of information accessibility of low visually impaired people and future research methods through research on Web UI/UX in mobile web environment for low visibility handicapped in the environment where information can be accessed through existing screen reader (TTS) and screen enlargement function.

  • PDF

Retrieval of Pollen Optical Depth in the Local Atmosphere by Lidar Observations (라이다를 이용한 지역 대기중 꽃가루의 광학적 두께 산출)

  • Noh, Young-Min;Lee, Han-Lim;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.