• Title/Summary/Keyword: Visibility Determination

Search Result 24, Processing Time 0.02 seconds

A Visibility Analysis of GNSS for the Railway Application (위성항법기술의 철도적용을 위한 가시성 분석 연구)

  • Shin, Kyung-Ho;Lee, Jun-Ho;Kim, Young-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.190-192
    • /
    • 2008
  • GNSS(Global navigation Satellite system) is the system which determines the users' position using the navigation satellites. The position determination using GNSS has to be always Possible to appling GNSS to railway system widely. Especially, to apply GNSS to the safety-critical application, such as train control system, the satellite's visibility has to be always secured. This study describes the necessity of visibility analysis and the method. And also the visibility analysis of the stand-alone GNSS and the integration GNSS are performed and the applicability of GNSS for train control application is analysed.

  • PDF

A Hybrid Visibility Determination Method to Get Vector Silhouette

  • Lu, Xuemei;Lee, Ki-Jung;WhangBo, Taeg-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.755-763
    • /
    • 2008
  • Silhouette is useful in computer graphics for a number of techniques such as non-photorealistic rendering, silhouette clipping, and blueprint generating. Methods for generating silhouette are classified into three categories: image-based, object-based, and hybrid-based. Hybrid-based method is effective in terms of time complexity but spatial coherence problem still remains. In this paper, we proposed a new hybrid-based method which produces 3D data for silhouette and also guarantees no spatial coherence problem. To verify the efficiency of the proposed algorithm, several experiments are conducted for various 3D models from simple to quite complex. Results show that our algorithm generates no gap between any two consecutive silhouette lines when the silhouette model is magnified significantly.

  • PDF

Visibility Measurement in an Atmospheric Environment Simulation Chamber

  • Tai, Hongda;Zhuang, Zibo;Jiang, Lihui;Sun, Dongsong
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.186-195
    • /
    • 2017
  • Obtaining accurate visibility measurements is a common atmospheric optical problem, and of vital significance to civil aviation. To effectively evaluate and improve the accuracy of visibility measurements, an outdoor atmospheric simulation chamber with dimensions of $1.8{\times}1.6{\times}55.7m^3$ was constructed. The simulation chamber could provide a relatively homogeneous haze environment, in which the visibility varied from 10 km to 0.2 km over 5 hours. A baseline-changing visibility measurement system was constructed in the chamber. A mobile platform (receiver) was moved from 5 m to 45 m, stopping every 5 m, to measure and record the transmittance. The total least-squares method was used to fit the extinction coefficient. During the experiment conducted in the chamber, the unit weight variance was as low as $1.33{\times}10^{-4}$ under high-visibility conditions, and the coefficient of determination ($R^2$) was as high as 0.99 under low-visibility conditions, indicating high stability and accuracy of the system used to measure the extinction coefficients and strong consistency between repeated measurements. A Grimm portable aerosol spectrometer (PAS) was used to record the aerosol distribution, and then Mie theory was used to calculate the extinction coefficients. The theoretical results were found to be consistent with the measurements and exhibited a positive correlation, although they were higher than the measured values.

Test and Integration of Location Sensors for Position Determination in a Pedestrian Navigation System

  • Retscher, Guenther;Thienelt, Michael
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.251-256
    • /
    • 2006
  • In the work package 'Integrated Positioning' of the research project NAVIO (Pedestrian Navigation Systems in Combined Indoor/Outdoor Environements) we are dealing with the navigation and guidance of visitors of our University. Thereby start points are public transport stops in the surroundings of the Vienna University of Technology and the user of the system should be guided to certain office rooms or persons. For the position determination of the user different location sensors are employed, i.e., for outdoor positioning GPS and dead reckoning sensors such as a digital compass and gyro for heading determination and accelerometers for the determination of the travelled distance as well as a barometric pressure sensor for altitude determination and for indoor areas location determination using WiFi fingerprinting. All sensors and positioning methods are combined and integrated using a Kalman filter approach. Then an optimal estimate of the current location of the user is obtained using the filter. To perform an adequate weighting of the sensors in the stochastic filter model, the sensor characteristics and their performance was investigated in several tests. The tests were performed in different environments either with free satellite visibility or in urban canyons as well as inside of buildings. The tests have shown that it is possible to determine the user's location continuously with the required precision and that the selected sensors provide a good performance and high reliability. Selected tests results and our approach will be presented in the paper.

  • PDF

Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry (방향 판별 분산간섭계의 최적 분산 조건 연구)

  • Yun, Young Ho;Kim, Dae Hee;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Performance Analysis of the KOMPSAT-1 GPS Receiver (아리랑 1호 탑재 GPS 수신기의 궤도 상 성능 분석)

  • Kim, Hae-Dong;Lee, Jin-Ho;Kim, Eun-Kyou;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.92-97
    • /
    • 2005
  • In this paper, the performance of the KOMPSAT-1 GPS receiver on orbit was analyzed. OD (Orbit Determination) accuracy using GPS navigation solutions and GPS visibility were investigated with respect to the configuration of the GPS receiver. Indeed, the problem such as ‘3D Fix Loss’ observed during the mission was presented. As a result, the OD accuracy of ‘Best-of-4’ Position Fix Algorithm with 0 degree of mask angle was slightly better than that of ‘N-in-View’ Position Fix Algorithm. On the other hand, the GPS visibility under ‘N-in-View’ Algorithm is better than that of ‘Best-of-4’ Algorithm. The occurrence of temporal 3D Fix Loss is reduced when the ‘N-in-View’ Position Fix Algorithm was selected.

The Determination method of Available Bandwidth for Automation of the Split-Spectrum Processing (스플릿-스펙트럼 처리의 자동화를 위한 가용대역폭의 결정방법)

  • Ko, Dae-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.27-31
    • /
    • 1995
  • In this paper, the determination method of available bandwidth for automation of the split-spectrum processing(SSP) has been studied. The SSP is used for the visibility enhancement of the ultrasonic signal with grain noise. Even though the SSP has proved useful in signal-to-noise ratio enhancement, its application and automation have been limited due to ambiguity in the determination of available bandwidth. Until recently, it is the usual practice to optimize the available bandwidth by trial and error. The spectral histogram is the statistical distribution of the spectral windows that is selected by the minimization algorithm with the whole band of the spectrum of the received ultrasonic signal. Since the available bandwidth can be determined adaptively using spectral histogram, this method can be used for automation of the SSP. In order to evaluate the determination technique of the available bandwidth using spectral histogram, this method is applied to experimental ultrasonic data. The experimental results show that the spectral histogram is an efficient method for determination of the available bandwidth and automation of the SSP.

  • PDF

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Son, Ju-Young;Park, Sun-youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of $GEO{\pm}200km$ and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.