• Title/Summary/Keyword: Viscous sub-layer

Search Result 14, Processing Time 0.024 seconds

Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box (사각용기에서 발생하는 고점성 유체의 슬로싱 유동)

  • park, Jun Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • A study on the sloshing flow of highly-viscous fluid in a rectangular box was made by both of theoretical approach and experimental visualization method. Assuming a smallness of external forcing to oscillate the container, it was investigated a linear sloshing flow of highly-viscous fluid utilizing asymptotic analysis by Taylor-series expansion as a small parameter Re (≪1) in which Re denotes Reynolds number. The theory predict that, during all cycles of sloshing, a linear shape of free surface will prevail in a bulk zone and it has confirmed in experiment. The relevance of perfect slip boundary condition, adopted in theoretical approach, to the bulk zone flow at the container wall was tested in experiment. It is found that quasi-steady coated thin film, which makes a lubricant layer between bulk flow and solid wall, is generated on the wall and the film makes a role to perfect slip boundary condition.

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

The Turbulent flow analysis by the Finite Element Method (유한요소법을 이용한 난류유동해석)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.253-256
    • /
    • 1999
  • The Streamline Upwind Petrov-Galerkin(SUPG) finite element method is used to solve the two-dimensional laminar and turbulent flow. The flow is simulated by averaged Navier-Stokes equations with a penalty function approach and the lograithmic(k-$\varepsilon$) turbulent model is employed to take into account its turbulent behavior. The near-wall viscous sub-layer model is employed to approach the dominant viscous effects in the near wall zones. To find a good-enough initial guess of the Newton-Raphson iteration solving Nonlinear Matrix the Incremental method is considered for momentum and the Incomplete logarithmic turbu-lent equations for Turbulence. The validation of our method is investigated in comparision with published experimental data.

  • PDF

Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

Direct Numerical Simulation of Mass Transfer in Turbulent new Around a Rotating Circular Cylinder ( I ) - At Sc=1670 - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 직접수치모사 ( I ) - 높은 Schmidt 수에 대하여 -)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.837-845
    • /
    • 2005
  • In this paper, an investigation on high-Schmidt number (Sc=1670) mass transfer in turbulent flow around a rotating circular cylinder is carried out by Direct Numerical Simulation. The concentration field is computed for three different values of low Reynolds number, namely 161, 348 and 623 based on the cylinder radius and friction velocity. Statistical study reveals that the thickness of Nernst diffusive layer is very small compared with that of viscous sub-layer in the case of high Sc mass transfer. Strong correlation of concentration field with streamwise and vertical velocity components is observed. However, that is not the case with the spanwise velocity component. Instantaneous concentration visualization reveals that the length scale of concentration fluctuation typically decreases as Reynolds number increases. Statistical correlation between Sherwood number and Reynolds number is consistent with other experiments currently available.

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

PIV Analysis of a Pulsating Flow through a Square Channel

  • SAGA Tetsuo;UEDA Toshiyuki;TANIGUCHI Nobuyuki
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.157-168
    • /
    • 2004
  • The effects of pulsation in a pulsating flow through a rectangular channel have been investigated by Particle Image Velocimetry in both laminar and turbulent flow conditions. PIV results on a square channel (aspect ratio:1) have been reported on the cases of Reynolds number Re=80 in laminar and Re=8800 in turbulent region. For both in the laminar and turbulent regions, the influence of the pulsation onto the magnitude changes of the average velocity was negligible. In the turbulent region, the magnitude profiles of the stream-wise pulsating component obtained by the theoretical analysis based on the Stokes analogy were slightly different from the experimental ones due to the influence of the turbulent viscosities onto the pulsating flows.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF FLOWFIELDS IN MICRONOZZLES (초소형 노즐 유동장에 관한 수치적 연구)

  • Seo, J.H.;Cho, H.G.;Lee, D.H.;Jung, S.C.;Myong, R.S.;Huh, H.I.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Owing to the rapid progress in manufacturing technology of microscale devices, there are active research works in developing microscale propulsion systems. In this study, gas flows in nozzles with size of milli and sub-millimeter are investigated by using a CFD code based on the Navier-Stokes equations. The prediction results were compared with theoretical results of quasi-one-dimensional nozzle flow and experiment data. In general, theoretical values agree very well with the CFD results. However, theoretical values begin to deviate from the CFD and experimental data for relatively small Reynolds numbers and the nozzle shape with rectangular cross section. The primary reason for this discrepancy is due to the existence of the thick boundary layer at the wall in low Reynolds flows.

Interpretation of Construction Procedure and Physicochemical Characteristics for Soil Layers from Sowangneung (Small Royal Tomb) of Ssangneung (Twin Tombs) in Iksan, Korea (익산 쌍릉 소왕릉 봉분 토층의 물리화학적 특성과 조영과정 해석)

  • Chae, Joon;Park, Seok Tae;Cho, Ji Hyun;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.748-766
    • /
    • 2021
  • The Iksan Ssangneung (twin tombs), a pair of tombs comprising the Daewangneung (large royal tomb) and the Sowangneung (small royal tomb), were constructed in the typical style of stone tunnel and chamber tombs in the Baekje Kingdom during the Sabi period (538 to 660 AD) of ancient Korea. Soil layers exposed during excavation of Sowangneung in a trench east of the tomb are: the bottommost layer, the ground level layer, the Panchuk (rammed earth) layer of the Baekje, the layer created by a grave robbery, and soil recovered during the Japanese colonial period. Soil samples were obtained by segmenting an easy stratigraphic horizon into sub categorized soil layers, and their material properties were analyzed; they are composed mainly of sandy loam based on the particle size distributions. In the site foundation, loamy sand is packed in the bottommost layer, and sandy loam with high sand and silty sand fills most of the overlying layer. The central and topmost portion of the Baekje layer is composed of loam with high clay content. All soil layers show geochemical behaviors similar to those of the bottommost layer. X-ray diffraction analysis verified kaolinite in all layers, also observed in soil layers displaying high crystallinity. Kaolinite and halloysite were identified by scanning electron microscopy. Thus, we conclude that the Baekje layer of the Sowangneung is composed of sandy loam containing kaolin procured from near the site. An impermeable middle to upper layer was created using viscous loam. The top of the tomb was closed tightly.