• Title/Summary/Keyword: Viscous sintering

Search Result 26, Processing Time 0.024 seconds

Synthesis and Characterization of Particle-filled Glass/G lass-Ceramic Composites for Microelectronic Packaging (I)

  • Hong, Chang-Bae;Lee, Kyoung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.11-21
    • /
    • 1999
  • For microelectronic packaging application, the crystallizable glass powder in CaO-$A1_2O_3-SiO_2-B_2O_3$system was mixed with various amounts of alumina inclusions (\approx 4 $\mu \textrm{m}$), and its sintering behavior, crystallization behavior, and dielectric constant were examined in terms of vol% of alumina and the reaction between the alumina and the glass. Sintering of the CASB glass powder alone at $900^{\circ}C$ resulted in full densification (99.5%). Sintering of alumina-filled composite at $900^{\circ}C$ also resulted in a substantial denslfication higher than 97% of theoretical density, In this case, the maximum volume percent of alumina should be less than 40%. XRD analysis revealed that there was a partial dissolution of alumina into the glass. This alumina dissolution, however, did not show the particle growth and shape accommodation. Therefore, the sintering of both the pure glans and the alumina-filled composite was mainly achieved by the viscous flow and the redistribution of the glass. Alumina dissolution accelerated the crystallization initiation time at $1000^{\circ}C$ and hindered the densification of the glass. Dielectric constants of both the alumina-filled glass and the glass-ceramic composites were increased with increasing alumina content and followed rule of mixture. In case of the glass-ceramic matrix composites showed relatively lower dielectric constant than the glass matrix composite. Furthermore, as alumina content increased, crystallization behavior of the glass was changed due to the reaction between the glass and the alumina. As alumina reacted with the glass matrix, the major crystallized phase was shifted from wollastonite to gehlenite. In this system, alumina dissolution strongly depended on the particle size: When the particle size of alumina was increased to 15 $\mu\textrm{m}$, no sign of dissolution was observed and the major crystallized phase was wollastonite.

  • PDF

Powder Synthesis and Sintering Behavior of Hydroxyapatite by Citrate Method (Citrate법을 이용한 수산화아파타이트 분말합성 및 소결특성)

  • 임병일;최세영;정형진;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1003-1011
    • /
    • 1996
  • Hydroxyapatite powder was synthesized by a citrate method, . Char-like precursor composed of Ca8(HPO4)2(PO4)4.5H2O (OCP) and CaCo3 was found via viscous resin-like intermediate by heating the mixed aqueous solution of Ca(NO3)2.4H2O(NH4)2HPO4 and citric acid. Resulted powder was transformed into hydroxyapatite phase by firing over 120$0^{\circ}C$-135$0^{\circ}C$ for 4 hr using the powder calcined at 90$0^{\circ}C$ for 10 hr composed of mostly single hydroxyapatite phase. The sintered densities increased with firing temperature up to 130$0^{\circ}C$ but the highest relative density was about 94% of theoritical value. indicating the presence of closed pores. The maximum 96 MPa of flexural strength was obtained at 120$0^{\circ}C$ firing but the flexural strength showed lower values over the above sintering condition. Vitro test was performed by immersing of two jointed specimens in SBF for seven days and adhesion was observed between two specimens.

  • PDF

Synthesis and Characterization of Type-VI Silica by Sol-Gel Method (졸-겔법을 이용한 Tape-VI형 실리카 에어로겔의 제조 및 특성분석)

  • 김성철;최대원;최용수;이종혁;이해욱;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.264-272
    • /
    • 1998
  • The effect of catalytic condition on the properties of SiO2 aerogels has been investigated and then the dri-ed aerogels were partially densified to induce mechanical strength by heat treatment in order to prepare Type-VI silica by Sol-Gel method. Aerogel made by 1-step base process had the highest skeletal density lowest shrinkage and the smallest particle size. But in case of using acid catalyst in both 1st and 2nd step had the lowest skeletal density highest shrinkage and the largest particle size The aerogel synthesized by 1-step base process was most transparent because of its homogeneous microstructure. During heat treatments cracks occurred below 200$^{\circ}C$ for aerogel with the skeletal density lower than 1.9 g/cm3 but the with the higher skeletal density did not cracked up to 800$^{\circ}C$ shrinkage and skeletal density increased as heating temperature increased due to condensation and viscous sintering mechanism.

  • PDF

CHARACTERISTICS OF LOW-TEMPERATURE PROCESSED DYE-SENSITIZED SOLAR CELL BY ELECTROCHEMICAL IMPEDANCE AND PHOTOCURRENT-PHOTOVOLTAGE TRANSIENT SPECTROSCOPY

  • Li, Yuelong;Lee, Doh-Kwon;Kim, Kyung-Kon;Ko, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.381-381
    • /
    • 2011
  • In this study, a TiO2 colloidal sol was synthesized by sol-gel process, which was used as a "glue" agent to enhance interconnection of TiO2 particles in low temperature process for plastic dye sensitized solar cell. The crystalline phase of this TiO2 glue is pure anatase with average particles size of 5 nm, which was characterized by powder X-ray diffraction and high revolution-TEM. The viscous alcoholic paste without any organic binder was prepared from the mixture of commercial P25 powder and glue. Paste composition and sintering process parameters were optimized for high photovoltaic performance based on low temperature process. The electrochemical impedance spectroscopy and photocurrent-photovoltage transient spectroscopy were also employed to investigate the mechanism of electron transport in this binder free TiO2 film system.

  • PDF

Preparation of Superflux Nickel Capillary Support with 3D Macropore Channel Network For Gas Separation and Liquid Filtration Membranes (기체/액체 분리막을 위한 3차원 Macropore 채널을 갖는 Superflux 니켈 모세관 지지체의 제조)

  • Song, Ju-Seob;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.214-219
    • /
    • 2018
  • In the present study, superflux nickel capillary supports for gas and vapor separation membranes were prepared by a combined process of NIPS and sintering. Nickel capillary precursors were prepared by NIPS process from PSf-Ni-DMAC-PEG400 dope solution and was sintered at various temperatures in $H_2$ atmosphere to reliably produce Ni capillary support. The optimized Ni capillary support has an outer and inner diameters of 722 and $550{\mu}m$, and its thickness was $94{\mu}m$. It has 3-dimensional pore channel network and its porosity and mean pore diameter was 26% and $4{\mu}m$, respectively. Also, its mechanical strength was tested in tensile mode: its fracture load was 2.84 kgf and the fracture elongation was 13%. Finally, its single gas permeance was measured: He, $N_2$, $O_2$, and $CO_2$ permeance was 432,327, 281,119, 264,259, and 193,143 GPU, respectively. The superflux behavior could be explained from viscous flow through the macropores having a diameter of $4{\mu}m$ and narrow thickness. It could be concluded that the superflux behavior of the Ni capillary support was from the 3-D pore channel network and the small thickness.

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.