• 제목/요약/키워드: Viscous flow

검색결과 976건 처리시간 0.021초

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 1. 동적실속이 없는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 1. without Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, numerical calculations are performed to analyze the unsteady flow of NACA airfoil sections. In order to ease the flow computation for the fluid region changing in time, improve the quality of solution and simplify the grid generation for the oscillating foil flow, the computational method adopts a moving and deforming mesh with the multi-block grid topology. The multi-block, structured-unstructured hybrid grid is generated using the commercial meshing software Gridgen V15. The MDM (Moving & Deforming Mesh) and the UDF (User Define function) function of FLUENT 6 are adopted for computing turbulent flows of the foil in pitching motion. Computed unsteady lift and drag forces are compared with experimental data. in general, the characteristics of unsteady lift and drag of the experiments are reproduced well in the numerical analysis.

저 Reynolds수 에 있어서의 원통주위의 흐름에 관한 연구 (A Study on the Flow around the Circular Cylinder at Low Reynolds Number)

  • 이은선;송강섭
    • 한국항해학회지
    • /
    • 제9권2호
    • /
    • pp.43-63
    • /
    • 1985
  • As a circular cylinder has a comparatively simple shape and becomes a basic problem for flows around other various shapes of bodies, the problem of two-dimensional viscous flow around the circular cylinder has been investigated, both theoretically and experimentally. But not a few problems are left unsolved. It is well known that the calculations are successfully made with the approximations of Stokes or Oseen for very low Reynolds numbers, but as Reynolds number is increased, Oseen's approximations as well as Stokes's ones become more and more remote from the exact solution of the Navier-Stokes equations. Therefore, in this paper, the authors transform the Navier-Stokes equations into the finite difference equations in the steady two-dimensional viscous flow at Reynolds number up to 45, and then solve the solution of the Navier-Stokes equations numerically. Also, the authors examine the accuracy of the solution by means of flow visualization with aluminum powder. The main results are as follows; (1) The critical Reynolds number at which twin vortices begin to form in the rear of the circular cylinder is found to be 6 in the experiment and 4 in the numerical solution. (2) As Reynolds number is increased, it is proved that the ratio of the length of the twin vortices to the diameter is grown almost linearly, both experimentally and numerically. (3) Separation angle is also increased according to reynolds number. But it is found that it would converge into 101.3 degrees, both experimentally and numerically.

  • PDF

2차원 비압축성 점성유동에 나타나는 압력 경계조건의 해결방안 (A solution method for the pressure-based boundary condition in the computation of two-dimensional incompressible viscous flow)

  • 이재헌
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.926-933
    • /
    • 1988
  • 본 연구에서는 SIMPLER 알고리즘이 응용된 기존 2차원 타원형 프로그램을 수 정하여 압력값의 절대치가 지배방정식의 경계조건으로 사용될 수 있도록 하였으며 이 를 이용한 계산예로서, 청정실과 유사한 유로에서의 유체 유동을 수치적으로 해석하여 수정된 프로그램의 타당성을 입증하였다.

부가물이 부착된 Wigley선형 주위의 점성유동 해석 (A Numerical Computation of Viscous Flow around a Wigley Hull For with Appendages)

  • 박종진;박승서;이승희
    • 대한조선학회논문집
    • /
    • 제34권2호
    • /
    • pp.39-47
    • /
    • 1997
  • 본 연구에서는 수치계산을 동하여 선체-부가물 주위의 난류유동을 해석하였다. 지배방정식으로는 Navier-Stokes방정식과 연속방정식을 사용하였으며, 선체 및 부가물의 3차원 형상을 정도 높게 표현하기 위하여 물체적합좌표계 (Body-Fitted Coordinate System)를 도입하였다. 지배방정식들은 유한체적법 (Finite Volume Method)을 이용하여 이산화 하였으며, 난류모형으로는 SGS (Sub-Grid Scale)모형을 사용하였다. 계산 대상 선형으로 실험 및 계산 자료가 많은 Wigley선형을 선택하고, $Rn=1.0{\times}10^6$인 경우에 대하여 계산을 수행하여 부가물이 선체 주위의 난류유동에 미치는 영향을 예측할 수 있음을 보였다.

  • PDF

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Numerical Simulation for the Rudder in order to Control the Cavitation Phenomena

  • Boo, Kyung-Tae;Song, In-Hang;Soochul Shin
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.42-50
    • /
    • 2004
  • In these ten years, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. The cavitation in the rudder blades which is injurious to rudder efficiency is mainly caused by the main flow with a large angle of attack induced by propellers, and the erosion which occurs as a result of repeated blows by shock wave that cavitation collapse may produce was observed in the gap legion of the rudder. However, gap cavitation is not prone to occur in model experiments because of low Reynolds number. So, the viscous effect should be considered for solving the flow of the narrow gap. In order to predict the cavitation phenomena and to improve the performance of the rudder, the analysis of the viscous flow in the rudder gap is positively necessary. In this study, numerical calculation for the solution of the RANS equation is applied to the two-dimensional flow around the rudder gap including horn part and pintle part. The velocity and pressure field are numerically acquired according to Reynolds number and the case that the round bar is installed in the gap is analyzed. For reduced the acceleration that pressure drop can be highly restrained numerically and in model experiment, the cavitation bubbles can be reduced.

수직원통 주위의 자유표면 층류운동의 수치해석 (Numerical Simulation of Laminar Flows for a Circular Cylinder Vertically Piercing Free Surface)

  • 윤범상;김윤호
    • 대한조선학회논문집
    • /
    • 제30권1호
    • /
    • pp.104-114
    • /
    • 1993
  • 본 논문에서는 점성유동에 미치는 자유표면의 영향을 조사하기 위하여 자유표면을 수직으로 관통하는 원통 주위의 유동을 수치 시뮬레이션 하였다. 수치해석 방법으로서 Artificial Compressibility Method를 사용하였으며, 계산은 낮은 레이놀드수의 영역에 국한하였다. 계산결과는 자유표면에 가까운 유체영역에서 유선, 점성항력 등에 적지않은 영향이 있음을 보여주고 있다. 자유표면의 존재는 물체 후류 중의 와류를 물체로 부터 분리시키는 방향으로, 점성항력을 감소시키는 방향으로 작용하는 것으로 보인다.

  • PDF

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

Thermal-flow analysis of a simple LTD (Low-Temperature-Differential) heat engine

  • Kim, Yeongmin;Kim, Won Sik;Jung, Haejun;Chen, Kuan;Chun, Wongee
    • 에너지공학
    • /
    • 제26권1호
    • /
    • pp.9-22
    • /
    • 2017
  • A combined thermal and flow analysis was carried out to study the behavior and performance of a small, commercial LTD (Low-Temperature-Differential) heat engine. Laminar-flow solutions for annulus and channel flows were employed to estimate the viscous drags on the piston and the displacer and the pressure difference across the displacer. Temperature correction factors were introduced to account for the departure from the ideal heat transfer processes. The analysis results indicate that the work required to overcome the viscous drags on engine moving parts and to move the displacer is much smaller than the moving-boundary work produced by the power piston for temperature differentials in the neighborhood of $20^{\circ}C$ and engine speeds below 10 RPS. A comparison with experimental data reveals large degradations from the ideal heat transfer processes. Thus, heat-transfer devices inside the displacer cylinder are recommended.

혈액모사유체의 미세협착 주변 맥동유동 시뮬레이션 (Numerical Simulation of Pulsatile Flows around Micro-Stenosis for Blood Analog Fluids)

  • 송재민;홍현지;하이경;염은섭
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.10-16
    • /
    • 2019
  • Considering the role of viscosity in the hemorheology, the characteristics of non-Newtonian fluid are important in the pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, contributes to block blood flows to downstream tissue and lead to plaque rupture. Therefore, systematic analysis of blood flow around stenosed vessels is crucial. In this study, non-Newtonian behaviors of blood analog fluids around the micro-stenosis with 60 % severity in diameter of $500{\mu}m$ was examined by using CFX under the pulsatile flow conditions with the period of 10 s. Viscosity information of two non-Newtonian fluids were obtained by fitting the value of normal blood and highly viscous blood. As the Newtonian fluid, the water at room temperature was used. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In addition, high viscous solution gives rise to increases the variation in the WSS around the micro-stenosis. Highly oscillating WSS enhance increasing tendency of plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.