• Title/Summary/Keyword: Viscous effect

Search Result 533, Processing Time 0.027 seconds

Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds

  • Farghaly, Ahmed Abdelraheem
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1293-1309
    • /
    • 2015
  • 3D two adjacent buildings with different heights founded in different kinds of soil connected with viscous dampers groups, with especial arrangement in plane, were investigated. Soil structure interaction for three different kinds of soil (stiff, medium and soft) were modeled as 3D Winkler model to give the realistic behavior of adjacent buildings connected with viscous dampers under various earthquake excitations taking in the account the effect of different kinds of soil beneath the buildings, using SAP2000n to model the whole system. A range of soil properties and soil damping characteristics are chosen which gives broad picture of connected structures system behavior resulted from the influence soil-structure interaction. Its conclusion that the response of connected structures system founded on soft soil are more critical than those founded on stiff soil. The behavior of connected structures is different from those with fixed base bigger by nearly 20%, and the efficiency of viscous dampers connecting the two adjacent buildings is reduced by nearly 25% less than those founded on stiff soil.

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

A Study on the Viscous Damping Effect According to the Shape of the Inclined OWC Chamber Skirt

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.270-279
    • /
    • 2022
  • In this study, numerical analysis and experiments were performed to analyze the viscous damping effect according to the shape of the chamber skirt of the breakwater-linked inclined oscillating water column wave energy converter. Experiments were conducted using a two-dimensional mini wave tank and verified by comparing the results of a computational fluid dynamics numerical analysis. Pointed and rounded skirts were modeled to compare the effect of viscous damping when incident waves enter the chamber, and the difference in the displacement of the water surface in the chamber was compared according to the wave period for the two skirt shapes. The wave elevation in the chamber in the rounded-skirt condition was larger than the pointed-skirt condition in all wave periods, which was approximately 47% greater at 0.9 s of the incident wave period. Therefore, extracting the maximum energy through the optimal orifice is possible while minimizing the energy attenuation in the rounded-skirt condition.

Dynamic Analysis of the Small Reciprocating Compressors Considering Viscous Frictional Force of a Piston (피스톤의 점성 마찰력을 고려한 소형 왕복동 압축기의 동적 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.904-913
    • /
    • 2002
  • In this study, a dynamic analysis of the reciprocating compression mechanism considering viscous friction force of a piston used in small refrigeration compressors is performed. The length of cylinder in this class of compressors is shortening to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder liner is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the compression mechanism dynamics, the change in bearing length of the piston and all corresponding viscous forces and moments are considered in order to determine the trajectories of piston and crankshaft. The piston orbits for viscous friction model and Coulomb friction model were used to compare the effect of the friction forces of piston on the dynamic trajectories of piston. To investigate the effect of friction force acting on the piston for the dynamic characteristics of crankshaft, comparison of the crankshaft loci is given in both viscous model and Coulomb model. Results show that the viscous friction force of piston must be considered in calculating for the accurate dynamic characteristics of the reciprocating compression mechanism.

Stability analysis of gas-liquid interface using viscous potential flow (점성포텐셜유동을 이용한 이상유동장의 표면안정성 해석)

  • Kim, Hyung-Jun;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3033-3038
    • /
    • 2007
  • In this research, Rayleigh instability of gas-liquid flow in annular pipe is studied in film boiling using viscous potential flow. Viscous potential flow is a kind of approximation of gas-liquid interface considering velocity field as potential including viscosity. A dispersion relation is obtained including the effect of heat and mass transfer and viscosity. New expression for dispersion relation in film boiling and critical wave number is obtained. Viscosity and heat and mass transfer have a stabilizing effect on instability and its effect appears in maximum growth rate and critical wave number. And the existence of marginal stability region is shown.

  • PDF

Effect of Damping Coefficients in Earthquakes Resistant Design with Viscous Dampers for Bridges (교량의 내진설계에 있어서 점성감쇠기능받침의 감쇠계수 영향평가)

  • 정상모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.399-406
    • /
    • 2000
  • Viscous dampers have been utilized as bearings and STU`s (Shock Transmission Unit) in earthquake resistant designs for bridges. Some viscous dampers are used as energy dissipators on one hand, but some dampers such as STU`s are used as fixing devices during an earthquake on the other hand. This paper discusses the effect of viscous dampers on the response of bridge with respect to the magnitude of damping coefficients. For this purpose, a typical bridge was taken as an example, and time-history dynamic analysis have been carried out. The input seismic data used in the analyses are relevant to the response spectra in the Koreans design code. The results show that there is an optimum value of coefficient considered most effective in the design. A STU with a large value of coefficient seems to make its support fixed. The response of the bridge is not much sensitive to the variation of the damping coefficients.

  • PDF

Effect of Friction Force on the Dynamic Characteristics of a Flow Divider Valve (Flow Divider Valve의 동특성에 미치는 마찰력의 영향)

  • 박태조;황태영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.198-203
    • /
    • 2000
  • In this paper, a numerical analysis is carried out to show the effect of friction farce on the dynamic characteristics of a flow divider valve. The continuity equations and the equation of motion fur spool are numerically solved. The viscous friction force acting on the spool is considered analyzing the Reynolds equation which governs the viscous flow in the clearance gap between the spool and sleeve. Dynamic characteristics are highly affected by the viscous friction farce whose magnitude is relatively small compare with other fluid forces. Therefore present theoretical formulation and numerical scheme can be used generally in designing and performance evaluation of all the hydraulic spool valve.

  • PDF

Temperature Changes of Cryogenic Fluid Flow in Pipe Bends due to Viscous Heating Effect (점성가열 효과에 의한 곡관 내 극저온 유체의 온도 변화)

  • HYO LIM KANG;IN JAE KO;SEUNG HO HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.428-436
    • /
    • 2024
  • Liquid hydrogen, which operates in cryogenic environments has a density 800 times greater than gaseous hydrogen, making it advantageous for large-scale storage and transportation. However, continuous evaporation due to external heat intrusion and internal heat generation poses challenges. To mitigate heat conduction, various insulation materials are used. In pipe systems, viscous heating effects from turbulence and viscosity, especially in bends, cause heat generation. This study employs computational fluid dynamics (CFD) to analyze the impact of fluid velocity, pressure drop, inner diameter, and curvature radius of pipe bends on viscous heating. Using liquid nitrogen at 77 K as a working fluid, the CFD results showed that increased velocity and pressure drop along with smaller inner diameter and curvature radius enhanced viscous heating, raising fluid temperature.

Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces

  • Yu, Chuanjin;Xiang, Huoyue;Li, Yongle;Pan, Maosheng
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • Under braking forces of a freight train, there are great longitudinal structural responses of a large freight railway cable-stayed bridge. To alleviate such adverse reactions, viscous dampers are required, whose parametric selection is one of important and arduous researches. Based on the longitudinal dynamics vehicle model, responses of a cable-stayed bridge are investigated under various cases. It shows that there is a notable effect of initial braking speeds and locations of a freight train on the structural responses. Under the most unfavorable braking condition, the parameter sensitivity analyses of viscous dampers are systematically performed. Meanwhile, a mixing method called BPNN-NSGA-II, combining the Back Propagation neural network (BPNN) and Non-Dominated Sorting Genetic Algorithm With Elitist Strategy (NSGA-II), is employed to optimize parameters of viscous dampers. The result shows that: 1. the relationships between the parameters of viscous dampers and the key longitudinal responses of the bridge are high nonlinear, which are completely different from each other; 2. the longitudinal displacement of the bridge main girder significantly decreases by the optimized viscous dampers.