• Title/Summary/Keyword: Viscous Penetration Depth

Search Result 6, Processing Time 0.016 seconds

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

An Experimental Study that depend on the Resonance Tube Length for a Thermoacoustic Refrigerator of 1/4 wave (1/4파장 열음향 냉동기의 공명관 길이 의존 특성 연구)

  • Song, Kyu-Joe;Park, Jong-Ho;Koh, Deuk-Yong;Park, Seong-Je
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.229-234
    • /
    • 2001
  • The thermoacoustic refrigerator bas not only considerable possibility but also commercial usability, because it bas high reliability, lower vibration, no moving part, and can easily be constructed. In this study, the resonance characteristics of the thermoacoustic refrigerator were investigated for better performance, varying length of the resonance tube to 400mm, 500mm, 600mm, 700mm. In order to determine the optimum resonance tube length and the frequency, the $\lambda/4$ thermoacoustic engine and the similar apparatus of Wheatly type refrigerator were constructed. It was used air as a coolant. in the fifth harmonic, it was taken the highest ${\Delta}t$ that was $56.3^{\circ}C$ at 626Hz in 400mm tube with 40mm stack.

  • PDF

An Experimental Study that depend on the Resonance Tube Length for a Thermoacoustic Refrigerator of 1/2 wave (1/2파장 열음향 냉동기의 공명관 길이 의존 특성 연구)

  • Song, Kyu-Joe;Park, Jong-Ho;Koh, Deuk-Yong;Kim, Hyo-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.217-222
    • /
    • 2001
  • The thermoacoustic refrigerator has not only considerable possibility but also commercial usability, because it has high reliability, lower vibration, no moving part, and can easily be constructed. In this study, the resonance characteristics of the thermoacoustic refrigerator were investigated for better performance, varying the length of Resonant Tube to 400mm $\sim850mm$. In order to determine the optimum position of stack in the resonance tube and the frequency, the simple $\lambda/2$ thermoacoustic refrigerator was constructed. It was used air as a coolant. in the fifth harmonic, it was taken the highest ${\Delta}t$ that was $52.6^{\circ}C$ at 827Hz in 400mm tube with 40mm stack.

  • PDF

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Spreading Characteristics of a Liquid Droplet Impacting Upon the Inclined Micro-textured Surfaces (기울어진 미세 텍스쳐 표면에 충돌하는 단일 액적의 퍼짐 특성)

  • Shin, Dong-Hwan;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • The present study investigated experimentally the spreading characteristics of a single liquid impinging on the inclined micro-textured aluminum (Al 6061) surfaces manufactured by using a micro computerized numerical control (${\mu}$-CNC) milling machine. The textured surfaces were composed of patterned micro-holes (diameter of $125\;{\mu}m$ and depth of $125\;{\mu}m$). In our experiment, the de-ionized (DI) water droplet of $4.3\;{\mu}l$ was impinged normally on the non-textured and textured surfaces at two different Weber numbers, and the droplet impinged on the inclined surfaces with different angles. A high speed camera was used to capture sequential digital images for measurement of the maximum spreading distance. It was found that for the textured surface, the measured apparent equilibrium contact angle (ECA) increased up to $105.8^{\circ}$, higher than the measured ECA of $87.6^{\circ}$ for the non-textured (bare) surface. In addition, it is conjectured that the spreading distance decreased because of a liquid penetration during droplet spreading through the holes, the increase in hydrophobicity, and viscous dissipation during impact process.