• Title/Summary/Keyword: Viscous Loss

Search Result 97, Processing Time 0.019 seconds

Vibration Control of Structure Using the Toggle System (Toggle 시스템을 이용한 구조물의 진동제어)

  • 황재승;송진규;강경수;윤태호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.491-498
    • /
    • 2003
  • The purpose of this study is to analyze the geometric nonlinearity of a toggle system and to evaluate the vibration control performance when the toggle system with a viscous damper was applied to a structure. Numerical analysis shows that the relative displacement of the structure can be amplified by amplification mechanism of the toggle system and the capacity of the damper can be reduced without the loss of vibration control performance. It is also observed that the geometric nolinearity of toggle system using the linear viscous damper has little effect on the performance.

  • PDF

High-Performance Damping Device for Suppressing Vibration of Stay Cable (사장 케이블 제진을 위한 고성능 감쇠 장치)

  • Jung Hyung-Jo;Park Chul-Min;Jang Ji-Eun;Park Kyu-Sik;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.489-496
    • /
    • 2005
  • In this paper, the feasibility of the high-performance damping device vibration suppression of stay cables has been investigated. The proposed damping system consists of a linear viscous damper and a scissor-jack-type toggle linkage. Since the mechanism of the scissor-jack-type toggle linkage amplifies the relative displacement of the linear viscous damper, it is expected that the capacity of the viscous damper used in the scissor-jack-damper energy dissipation system can be reduced without the loss of the control performance. Numerical simulation results demonstrate the efficacy of the damping system employing the scissor-jack-type toggle linkage. Therefore, the proposed damping system could be considered as one of the promising candidates for suppressing vibration of stay cable.

  • PDF

A Simple Estimation of the Viscous Resistance of Ships by Wake Surveys

  • Shin-Hyoung,Kang;Beom-Soo,Hyun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.2
    • /
    • pp.19-25
    • /
    • 1982
  • Several formulae have been proposed to estimate the viscous resistance of ships by wake surveys. Both the total head and the velocity should be measured. The integration of he total head loss shows over estimations of the resistance by about 10%. Therefore measurements of the velocity are required, which need much more works. A simple method is suggested in this paper to take accout of the velocity-defect from the measured total head. It gives reasonable estimations of the viscous resistance within the experimental accuracy. Experimental data of a low-drag body of revolution in the wind-tunnel and Series 60 model, CB=0.6 in the tank are used to verify the suggested formula.

  • PDF

Hydrodynamic analysis of a floating body with an open chamber using a 2D fully nonlinear numerical wave tank

  • Uzair, Ahmed Syed;Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.281-290
    • /
    • 2012
  • Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.

Simple Equivalent Circuit for Efficiency Calculation of Brushless DC Motors

  • Ishikawa, Takeo;Tsuji, Takuma;Hashimoto, Seiji;Kurita, Nobuyuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • This paper shows a calculation method of several types of loss and the efficiency of brushless DC motors coupled with a load system by using a simple equivalent circuit, in which copper loss, eddy current loss, hysteresis loss, friction loss, viscous loss, and inverter loss are taken into account. We clarify each loss and motor efficiency at different motor speeds and different output torques by using the Microsoft-Excel. Moreover, the calculated results are in good agreement with the measured ones.

Numerical Evaluation of Flow and Performance of Turbo Pump Inducers

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.481-490
    • /
    • 2004
  • Steady state flow calculations are executed for turbo-pump inducers of modern design to validate the performance of Tascflow code. Hydrodynamic performance of inducers is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of whole pressure loss through the blade passage. The viscous loss is considerably large due to the strong secondary flow. There appears more stronger leading edge recirculation for the backswept inducer, and this increases the pressure loss. However, blade loading near the leading edge is considerably reduced and cavitation inception delayed.

Semisubmersible platforms with Steel Catenary Risers for Western Australia and Gulf of Mexico

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.99-113
    • /
    • 2012
  • Steel Catenary Risers (SCR) are the simplest and often the most economic solution compared to other riser types such as flexible pipe, riser towers, top tensioned risers, etc. The top of a SCR is connected to the host platform riser porch. The other end of the SCR connects to flowlines from subsea wells. The riser touchdown point (TDP), which is the location along the riser where contact with the sea floor first occurs, exhibits complex behaviors and often results in compression and fatigue related issues. Heave dynamic responses of semisubmersibles in extreme and operating sea states are crucial for feasibility of SCR application. Recent full field measurement results of a deep draft semisubmersible in Hurricane Gustav displayed the considerable discrepancies in heave responses characteristics between the measured and the simulated results. The adequacy and accuracy of the simulated results from recognized commercial software should be examined. This finding raised the awareness of shortcomings of current commercial software and potential risk in mega investment loss and environmental pollutions due to SCR failures. One main objective of this paper is to attempt to assess the importance and necessity of accounting for viscous effects during design and analysis by employing indicator of viscous parameter. Since viscous effects increase with nearly third power of significant wave height, thus newly increased metocean criteria per API in central Gulf of Mexico (GoM) and even more severe environmental conditions in Western Australia (WA) call for fundamental enhancements of the existing analysis tools to ensure reliable and robust design. Furthermore, another aim of this paper is to address the impacts of metocean criteria and design philosophy on semisubmersible hull sizing in WA and GoM.

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device (고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석)

  • Koo, Weon-Cheol;Kim, Moo-Hyun;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.