• Title/Summary/Keyword: Viscous Fluid

Search Result 569, Processing Time 0.022 seconds

The Interaction Between the Torsional Vibration of a Circular Rod and an Adjacent Viscous Fluid (원형 봉의 비틀림 진동과 인접 점성유체의 상호작용)

  • Chun, Han-Yong;Kim, Jin-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.378-385
    • /
    • 2001
  • This paper deals with the effect of an adjacent viscous fluid on the torsional vibration of a circular rod excited by a transducer at one end. The interaction between the torsional vibration of the rod and the fluid has been studied theoretically and expressed in terms of the mechanical impedance. The theoretically-obtained trend that the mechanical impedance is proportional to the square root of the viscosity times density of the fluid has been confirmed by the impedance measurement. The paper demonstrates that a torsionally-vibrating rod can be used as a sensor measuring the viscosity of a fluid.

  • PDF

Fluid-Structure Interaction Analysis for Structure in Viscous Flow (점성 유동장에서 운동하는 구조체의 유탄성 해석)

  • Nho, In-Sik;Shin, Sang-Mook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • To calculate the fluid-structure interaction(FSI) problem rationally, it should be the basic technology to analyse each domain of fluid and structure accurately. In this paper, a new FSI analysis algorithm was introduced using the 3D solid finite element for structural analysis and CFD code based on the HCIB method for viscous flow analysis. The fluid and structural domain were analysed successively and alternatively in time domain. The structural domain was analysed by the Newmark-b direct time integration scheme using the pressure field calculated by the CFD code. The results for example calculation were compared with other research and it was shown that those coincided each other. So we can conclude that the developed algorithm can be applied to the general FSI problems.

MHD Hartmann flow of a Dusty Fluid with Exponential Decaying Pressure Gradient

  • ATTIA HAZEM A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1232-1239
    • /
    • 2006
  • In the present study, the unsteady Hartmann flow with heat transfer of a viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates. The equations of motion are solved analytically to yield the velocity distributions for both the fluid and dust particles. The energy equations for both the fluid and dust particles including the viscous and Joule dissipation terms, are solved numerically using finite differences to get the temperature distributions.

On Weakly Z Symmetric Spacetimes

  • De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.761-779
    • /
    • 2018
  • The object of the present paper is to study weakly Z symmetric spacetimes $(WZS)_4$. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat $(WZS)_4$ spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field ${\rho}$. We also study $(WZS)_4$ spacetimes with divergence free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid $(WZS)_4$ spacetimes. Finally, we construct an example of a $(WZS)_4$ spacetime.

Study on the Highly Viscous Fluid Ejection Pressure of Magnetostrictive Inkjet Head (자기변형 잉크젯헤드의 고점도 유체 토출 요구 압력에 관한 연구)

  • Oh, Ock Kyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • This paper presents ejection of high viscosity fluids with magnetostrictive inkjet printhead(Magjet), which is not common with any other printhead. The MagJet uses a magnetostrictive material, Terfenol-D rod with 10-mm in diameter and 50-mm in length, as an actuation mechanism. It has been known that high viscosity is often an obstacle in ejecting small and mono-disperse droplets. We calculated required pressure with fluidic inertia (Bernoulli equation) and viscous loss (Hagen Poiseuille equation). The required pressure for ejecting a droplet is 1300kPa. The generated force and displacement with Terfenol-D rod are estimated to be 480N (2600kPa) and $28{\mu}m$, respectively. It was enough that Magjet eject high viscosity fluid (Max 1000cP). The experiments are performed to eject the high viscosity fluid with Magjet. The ejection of high viscosity fluids is successful with the aid of Terfenol-D's high performance.

Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load

  • Tahami, F. Vakili;Biglari, H.;Raminnea, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.515-526
    • /
    • 2017
  • Dynamic response of functionally graded Carbon nanotubes (FG-CNT) reinforced pipes conveying viscous fluid under accelerated moving load is presented. The mixture rule is used for obtaining the material properties of nano-composite pipe. The radial force induced by viscous fluid is calculated by Navier-Stokes equation. The material properties of pipe are considered temperature-dependent. The structure is simulated by Reddy higher-order shear deformation shell theory and the corresponding motion equations are derived by Hamilton's principal. Differential quadrature (DQ) method and the Integral Quadrature (IQ) are applied for analogizing the motion equations and then the Newmark time integration scheme is used for obtaining the dynamic response of structure. The effects of different parameters such as boundary conditions, geometrical parameters, velocity and acceleration of moving load, CNT volume percent and distribution type are shown on the dynamic response of pipe. Results indicate that increasing CNTs leads to decrease in transient deflection of structure. In accelerated motion of the moving load, the maximum displacement is occurred later with respect to decelerated motion of moving load.

Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid (수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(1))

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2014
  • Mixed convective vortex flow in the three-dimensional rectangular channel filled with high viscous fluid(Pr=909) is investigated computationally under various operating conditions. The Reynolds number is varied from 0 to $5{\times}10^{-1}$, the Rayleigh number from $10^3$ to $5{\times}10^4$. The three-dimensional governing equations are discretized using the finite volume method. The effects of Reynolds number and Rayleigh number are presented and discussed. From a parametric study, it is found that vortex flow pattern of mixed convection in rectangular channels can be classified into three flow patterns basically, but the new vortex flow structures containing wave rolls are found, which are affected by Rayleigh number and Reynolds number. From this results, we can draw a flow regime map to delineate various vortex flow patterns in the high viscosity fluid mixed convective flow.

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

Hall Effect on Unsteady Hartmann Flow with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1302-1308
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF