• Title/Summary/Keyword: Viscosity Change

Search Result 627, Processing Time 0.028 seconds

Change of Chemical Pulp Fiber Properties with Cellulase Component($C_1$, $C_{x}$) Treatment (CelIulase 구성 요소별 처리에 의한 펄프 섬유의 특성 변화)

  • Kim, Byung-Hyon;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.13-23
    • /
    • 1998
  • Two major cellulase components purified with sephadex G-75 and DEAE sepharose were applied to bleached kraft pulp to inverstigate the change of fiber properties. Cellulose viscosity was very sensitive to $C_x$ component treatment (more than 15% drop was observed) while being little influenced by $C_1$, component (only 2% drop). Fiber fraction longer than 2mm was reduced by $C_x$ treatment while short fiber fraction was increased greatly by more than 15%. There was little change in fiber length distribution by combined treatment of $C_1$ 1 and $C_x$ at equal. In this case, fine contents increased by more than 2.5% at equivalent refining time. WRV and Density were increased as the amount of $C_1$ or $C_x$ treatment was increased. $C_{x}$ was main cause for increasing them. But the effect fell as enzyme dosage.

  • PDF

Variation of a Triangular Pattern Shape due to Shrinkage in the Repeated UV Imprint Process (반복적인 UV 임프린트 공정에서 수축에 따른 삼각 단면을 가진 패턴의 형상 변화)

  • Jeong, Jiyun;Choi, Su Hyun;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.67-73
    • /
    • 2020
  • Shrinkage is inevitable in the curing of resins during the nanoimprint process. The degree of shrinkage that occurs as the resin transforms from a viscous liquid to solid differs depending on the type of resin. However, if the cured material is repeatedly cured using the same material, constant shrinkage can be confirmed. In this study, the pattern of change was observed by repeatedly performing the nanoimprint process using a resin with a constant shrinkage rate. The observed pattern for the change of shape was made using a triangular pyramid-shaped aluminum master mold and a flexible replica mold made from the master. Shrinkage that results from the nanoimprint process occurs linearly in the longitudinal direction of the pattern and can be predicted by simple calculations. The change of the pattern due to shrinkage occurred as expected. If the shrinkage rate remains constant, various patterns can be manufactured with high accuracy by correcting these changes before producing a specific shape. This study confirms that the pattern of the desired angle can be obtained by performing the repeated imprint without having to manufacture a master mold.

Analysis for Filling Stage of Injection Molding Considering Compressibility and Phase Change (압축성과 상변화를 고려한 사출성형의 충전과정 해석)

  • Lee, Sang-Chan;Park, Chang-Eon;Yang, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.60-65
    • /
    • 2001
  • To simulate the real molding conditions, the effects of phase change and compressibility of the resin were considered in the present investigation. A modified Cross model with either an Arrhenius-type or WLF-type functional form was used for modeling viscosity of the resin. A double-domain Tait equation of state was employed to describe the compressibility of the resin during molding. The energy balance equation including latent-heat dissipation fur semi-crystalline materials was solved in order to predict the solidified layer and temperature profile. Injection molding experiments were carried out using polypropylene(PP) in the present study. Based on the comparison between experiments and simulations, it was found out the predicted pressure distributions and melt front propagations were accurate. Thus it was concluded that the program developed in this study was proved to be useful in simulations of injection molding process.

  • PDF

Stretchable Electrode Properties Study According to Particle Size of Flake-type Ag Powders (Flake-type Ag분말의 입자크기에 따른 신축성 전극 특성 연구)

  • Nam, Hyun Min;Sea, Min Ho;Nam, Su Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the average particle size of silver powder was 2㎛, 7㎛, and a mixture of these (50:50wt%), three kinds of silver pastes were prepared. In addition, as a result of examining the viscosity and viscoelasticity of the three silver pastes, TGA measurement, resistance change according to strain, and change in surface structure of the electrode, the following conclusions were obtained. Summarizing these results, it was found that it is most desirable to have a particle size of about 2㎛ in order to minimize the change in resistance due to strain.

The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

  • Ahn, Chi Bum;Kang, Yang Jun;Kim, Myoung Gon;Yang, Sung;Lim, Choon Hak;Son, Ho Sung;Kim, Ji Sung;Lee, So Young;Son, Kuk Hui;Sun, Kyung
    • Journal of Chest Surgery
    • /
    • v.49 no.3
    • /
    • pp.145-150
    • /
    • 2016
  • Background: Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods: Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous $O_2$ saturation, and lactate were measured. Results: The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion: After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

Quality Characteristics of Pan Bread Added with Black Garlic Flour (흑마늘 가루를 첨가한 제빵의 품질 특성)

  • Kim, Jung-Hoon;Lee, Myung-Ho;Lee, Sang-Ah;Choi, Young-Sim
    • Culinary science and hospitality research
    • /
    • v.16 no.3
    • /
    • pp.286-297
    • /
    • 2010
  • This study examines physiochemical characteristics of functional bread with black garlic flour added such as its content, texture, sensory test and quality properties. The loaf volume and weight of black garlic flour-added pan bread showed that for the control, the loaf volume was the greatest, and the more the black garlic flour content increased, the smaller the loaf volume became. The change of crust chromaticity showed that the L value decreased significantly, and crust chromaticity thickened, and as the black garlic flour content increased, a value and b value decreased. The characteristics of texture showed that the hardness and chewiness decreased as the black garlic flour content increased, and gumminess increased significantly while there was no significant difference in cohesiveness. The flavor, taste and texture of pan bread with black garlic flour content didn't showed a significant difference with the control. Consequently, the black garlic flour-added wheat flour was no significant difference with the control up to 3% black garlic flour-added wheat flour, which can be used as a product.

  • PDF

Physicochemical Properties of Cross-linked and Partially Enzymatically Hydrolyzed (CLE) Waxy Rice Starch (가교화 후 효소처리(CLE) 찹쌀 전분의 물리화학적 특성)

  • Yu, Chul;Kim, Sung-Woo;Kim, Chong-Tai;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.290-296
    • /
    • 2008
  • This study examined the physicochemical properties of chemically and enzymatically cross-modified waxy rice starches. The waxy rice starch was cross-linked using phosphorous oxychloride, and then partially hydrolyzed with four commercial ${\alpha}$-amylases (Fungamyl, Termamyl, Liquozyme, Kleistase). Swelling power and the moisture sorption isotherm did not change with cross-modification. Two cross-modified waxy rice starches (hydrolyzed with Termamyl and Liquozyme) showed higher solubilities than native starch and the two other cross-modified starches (hydrolyzed with Fungamyl and Kleistase). In terms of RVA characteristics, the two cross-modified waxy rice starches hydrolyzed with Termamyl and Liquozyme, respectively, had lower peak viscosity, holding strength, and final viscosity than the native starch. However, the two starches hydrolyzed with Fungamyl and Kleistase, respectively, revealed higher peak viscosity, holding strength, and final viscosity than the native starch. No differences were displayed in the X-ray diffraction patterns and DSC thermal characteristics of the cross-modified waxy rice starch as compared to both the native and cross-linked starches, indicating that cross-linking and enzymatic hydrolysis occurred in the amorphous region and did not alter the crystalline region.

Modulation of Hyaluronic Acid Properties by Electron Beam Irradiation (전자선 조사를 이용한 히알루론산의 특성 조절)

  • Shin, Young Min;Kim, Woo-Jin;Kim, Yong-Soo;Jo, Sun-Young;Park, Jong-Seok;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • A variety of natural polymers have been used as tissue engineering scaffolds, drug delivery system, and cosmetic materials due to their higher biocompatibility and water uptake. As a major component of extracellular matrix, hyaluronic acid consisting of D-glucuronic acid and N-acetylglucosamine has been popularly used as a hydrogel material. Even though it has good properties to be used in the tissue engineering and cosmetic industry, its higher viscosity has limited a potential use in a variety of applications; only low content should be applied in preparing above products. In the present study, we investigated the effect of electron beam irradiation on the properties of hyaluronic acid. Hyaluronic acid paste containing low contents of water changed to solution after electron beam irradiation ranging from 1 to 10 kGy, which didn't exhibit any alteration of surface properties and morphological change after freeze-drying. However, its viscosity was significantly decreased as absorbed dose increased, which was approximately one by hundred in comparison with the viscosity of original hyaluronic acid solution with same concentration. In addition, it can still interact with positive charged chitosan generating polyelectrolyte complex. Therefore, only viscosity was decreased after electron beam irradiation, whereas other properties of hyaluronic acid maintained. Consequently, these hyaluronic acids with lower viscosities can be used in a variety of applications in tissue engineering, drug delivery, and cosmetic industry.

SHRINKAGE OF VITREOUS BODY CAUSED BY HYDROXYL RADICAL

  • Park, Myoung-Joo;Shimada, Takashi;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • In this study, we examined the effect of hydroxyl radical generated by $\gamma$-ray and UV irradiation on shrinkage of vitreous body. Change in gel ratio of vitreous body and change in the properties of its components (collagen, sodium hyaluronate) were analyzed. By comparing these results, the amount of hydroxyl radical, which induces the considerable shrinkage of vitreous body, was evaluated from theoretical calculation based on experimental condition and some reported kinetic parameters. It was concluded that the integrated amount of hydroxyl radical required to liquefy half of the vitreous body (Vitreous body gel ratio = 50%) was estimated as $140\;{\mu}molg^{-1}$ from $\gamma$-ray irradiation experiment. Also, from UV irradiation experiment result, it was confirmed that the effect of hydroxyl radical is larger than that of other reactive species. The causes of shrinkage of vitreous body are supposed as follows, 1) decrease in viscosity by cleavage of glycoside bond in sodium hyaluronate, 2) leaching of collagen from vitreous body and 3) leaching of crosslinked products and scission products of collagen.

Simulation of Ceramic Powder Injection Molding Process to Clarify the Change of Sintering Shrinkage Depending on Flow Direction (유동방향과 밀도이방성 분석을 위한 세라믹 분말사출성형 해석)

  • Kwak, Tae-Soo;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.229-233
    • /
    • 2009
  • This study has focused on manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould to clarifying the change of sintering shrinkage depended on flow direction. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.