• Title/Summary/Keyword: Viscoplastic Analysis

Search Result 176, Processing Time 0.028 seconds

Seismic Response Analysis at Multi-layered Ground During Large Earthquake (대형지진시 다층지반의 지진응답해석)

  • 김용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.55-64
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic response analysis. From the seismic response analysis, it was found that the acceleration calculated from the cyclic elasto-viscoplastic model and cyclic viscoelastic-viscoplastic models for clay was in close agreement with the recorded accelerations at the Port Island down-hole array, and the cyclic elastic-viscoplastic and viscoelastic-viscoplastic constitutive models showed little different behavior characteristics near clay layer. Thus, the propriety of viscoplastic model for clay was convinced. Therefore, it can be concluded that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the amplification and also it showed accurate damping characteristics of clay during large event which induces plastic deformation in large strain range.

Analysis of Damaged Material Response Using Unified Viscoplastic Constitutive Equations (통합형 점소성구성식을 이용한 손상재료거동해석)

  • Ha Sang Yul;Kim Ki Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.253-261
    • /
    • 2005
  • In decades, a substantial body of work on a unified viscoplastic model which considers the mechanism of plastic deformation and creep deformation has developed. The systematic scheme for numerical analysis of unified model is necessary because the dominant failure mechanism is the defect growth and coalescence in materials. In the present study, the unified viscoplastic model for materials with defects suggested by Suquet and Michel was employed for numerical analysis. The constitutive equations are integrated based on the generalized mid-point rule and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). To evaluate the validity of the developed UMAT code and the assessment of the adopted viscoplastic model, the results obtained from the UMAT code was compared with the numerical reference solution and experimental data. The unit cell analysis also has been investigated to study the effect of strain rate, temperature, stress triaxiality and initial defect volume fraction on the growth and coalescence of the defect.

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.

Viscoplastic analysis of thin-walled tubes under cyclic bending

  • Pan, Wen-Fung;Hsu, Chien-Min
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.457-471
    • /
    • 1999
  • In this paper, different curvature-rates are controlled to highlight the characteristic of viscoplastic response in cyclic bending tests. The curvature-ovalization apparatus, which was designed by Pan et al. (1998), is used for conducting the curvature-controlled experiments on thin-walled tubular specimens for AISI 304 stainless steel under cyclic bending. The results reveals that the faster the curvature-rate implies, the fast degree of hardening of the metal tube. However, the ovalization of the tube cross-section increases when the curvature-rate increases.

Rate-dependent Viscoplastic-Damage Model of Concrete under Cyclic Loading (반복하중을 받는 콘크리트의 재하속도 의존 점소성-손상 모델)

  • 송하원;임현우;김인순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • The objective of this paper is to develop a consistent algorithm for the finite element analysis for behavior of concrete under cyclic loading using viscoplastic-damage model. For modeling the behavior of concrete under cyclic loading, consistent algorithms of rate-dependent viscoplastic-damage are employed with a Willam-Warnke 5-parameter failure criterion which can consider the softening behavior of concrete and consistent tangent moduli are derived. Using finite element program implemented with the developed algorithms, the algorithms are verified and the behaviors of concrete under cylic loading are simulated and compared with experimental data.

  • PDF

Thermo-viscoplastic finite element analysis of orthogonal metal cutting considered tool edge radius (공구끝단반경이 고려된 2차원 금속절삭에 대한 열-점소성 유한요소해석)

  • Kim, Kug-Weon;Lee, Woo-Young;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, thermo-viscoplastic finite element analysis of the effect of tool edge radius on cutting process are performed. The thermo-viscoplastic cutting model is capable of dealing with free chip geometry and chip-tool contact length. The coupling with thermal effects is also considered. Orthogonal cutting experiments are performed for 0.2% carbon steel with tools having 3 different edge radii and the tool forces are measured. The experimental results are discussed in comparison with the results of the FEM analysis. From the study, we confirm that this cutting model can well be applied to the cutting process considered the tool edge radius and that a major causes of the "size effect" is the tool edge radius. With numerical analysis, the effects of the tool edge radius on the stress distributions in workpiece, the temperature distributions in workpiece and tool, and the chip shape are investigated.estigated.

Modeling Strain Rate-dependent Behavior in Consolidation of Natural Clay (자연점토의 변형률속도 의존적인 압밀거동의 해석)

  • ;Leroueil, S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.17-28
    • /
    • 1999
  • In order to analyze effects of strain rate on consolidation of natural clay, this paper presents a nonlinear elasto viscoplastic model in which viscoplastic behavior is modeled by a unique effective stress-strain-strain rate relationship (equation omitted). The predicted values using numerical analysis are compared with measured ones in several laboratory tests such as creep test, multistage load test, and relaxation test for Berthierville clay. It is possible to estimate consolidation behavior of natural clay with reasonable accuracy using the proposed nonlinear viscoplastic model.

  • PDF

Dynamic Analysis of Sand-Clay Layered Ground Considering Viscous Effect of Clay

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.45-52
    • /
    • 2006
  • A cyclic viscoelastic-viscoplastic constitutive model for clay is incorporated into an effective stress based seismic response analysis to describe viscous effect of clay layer to sand layer during earthquake. The seismic response against main shock of 1995 Hyogoken Nambu Earthquake is analyzed in the present study. Acceleration responses in both clay layer and just upper liquefiable sand layer are damped due to viscous effect of clay. A cyclic viscoelastic-viscoplastic constitutive model for clay was implemented into a FEM code, and $Newmark{\beta}$ method was employed for the time discretization in the finite element formulation. Seismic responses were simulated by numerical method with recorded data at Port Island, Kobe, Japan. As results of this study, it was found that a cyclic viscoelastic-viscoplastic constitutive model can give good description of dynamic behavior characteristics including viscoelastic effect.

Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes (다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석)

  • 이석원;최대영;전만수
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF