• Title/Summary/Keyword: Virus genetic algorithms

Search Result 2, Processing Time 0.016 seconds

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.

The Design of Target Tracking System Using FBFE Based on VEGA (VEGA 기반 FBFE을 이용한 표적 추적 시스템 설계)

  • 이범직;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.359-365
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion(FBFE) based on virus evolutionary genetic algorithm (VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FDFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by idenLifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF