• Title/Summary/Keyword: Virus elimination

Search Result 35, Processing Time 0.025 seconds

Effects of Thermotherapy and Shoot Apical Meristem Culture, Antiviral Compounds for GLRaV-3 Elimination in Grapevines (열처리와 생장점 배양 및 항바이러스제 처리에 의한 포도 GLRaV-3의 무독화효과)

  • Kim, Hyun-Ran;Chung, Jae-Dong;Park, Jin-Woo;Choi, Yong-Mun;Yiem, Myoung-Soon
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • Grapevine leafroll-associated virus 3(GLRaV-3) is one of the most severe pathogens for viral diseases found in Korea. This study was conducted to establish the virus-free stock production system for the virus disease control. The effects of thermotherapy, merestem culture and chemotheratpy to eliminate the GLRaV-3 in gratevines were tested. Thermotherapy at 37$\pm$2$^{\circ}C$ for 6∼8 weeks combined with 0.5∼1.0mm size of meristem culture method was the most effective for virus elimination. Thermotherapy alone was not effective. In chemotheratpy, DHT and Amantadine (20, 40mg/L) treatment in medium was more effective than Ribavirin to eliminate the GLRaV-3 in grapevine. However, Ribavirin spraying to potted was not available for virus elimination. Therefore, virus-free stock production system using the thermotherapy combined with shoot apical meristem culture was the most effective in grapevine.

Efficacy of Tissue Culture in Virus Elimination from Caprifig and Female Fig Varieties (Ficus carica L.)

  • Bayoudh, Chokri;Elair, Manel;Labidi, Rahma;Majdoub, Afifa;Mahfoudhi, Naima;Mars, Messaoud
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.288-295
    • /
    • 2017
  • Fig mosaic disease (FMD) is a viral disease that spreads in all Tunisian fig (Ficus carica L.) orchards. RT-PCR technique was applied to leaf samples of 29 fig accessions of 15 fig varieties from the fig germplasm collection of High Agronomic Institute (I.S.A) of ChattMariem, to detect viruses associated to FMD. Analysis results show that 65.5% of the accessions (19/29) and 80.0% (12/15) of the fig varieties are infected by FMD-associated viruses. From all fig accessions, 41.4% of them are with single infection (one virus) and 24.1% are with multi-infections (2 virus and more). Viruses infecting fig leaf samples are Fig mosaic virus (FMV) (20.7%), Fig milde-mottle-associated virus (FMMaV) (17.25%), Fig fleck associated virus (FFkaV) (3.45%), and Fig cryptic virus (FCV) (55.17%). A reliable protocol for FCV and FMMaV elimination from 4 local fig varieties Zidi (ZDI), Soltani (SNI), Bither Abiadh (BA), and Assafri (ASF) via in vitro culture of 3 meristem sizes was established and optimized. With this protocol, global sanitation rates of 79.46%, 65.55%, 68.75%, and 70.83% respectively for ZDI, SNI, BA, and ASF are achieved. For all sanitized varieties, the effectiveness of meristem culture for the elimination of FCV and FMMaV viruses was related to meristem size. Meristem size 0.5 mm provides the highest sanitation rates ranging from 70% to 90%.

Development of a Reliable Technique to Eliminate Sweet potato leaf curl virus through Meristem Tip Culture Combined with Therapy of Infected Ipomoea Species

  • Cheong, Eun-Ju;Hurtt, Suzanne;Salih, Sarbagh;Li, Ruhui
    • Korean Journal of Plant Resources
    • /
    • v.23 no.3
    • /
    • pp.233-241
    • /
    • 2010
  • In vitro elimination of Sweet potato leaf curl virus (SPLCV) from infected sweet potato is difficult due to low number of virus-free plants obtained from meristem tip culture and long growth period required for the virus detection. In this study, efficient production of the SPLCV-free sweet potato by in vitro therapy coupled with a PCR assay for virus detection was investigated. Infected shoots cultured on Murashige and Skoog medium were treated at three different temperatures for 7 weeks followed by meristem tip culture on the medium with or without ribavirin at 50 mg/L. The regenerated plantlets were tested for virus infection by a PCR assay. The results showed that the both heat- and cold-treatments, and addition of the ribavirin did not have significant effect on efficiency of the virus elimination. The meristem size, however, greatly affected the survival rate. Meristems sized over 0.4 mm survived better than smaller ones (0.2-0.3 mm). The PCR assay was approved to be a rapid, sensitive and reliable for the SPLCV detection in regenerated plantlets. Therefore, combination of cultivating meristem tips sized 0.4-0.5 mm on the medium at $22^{\circ}C$ without ribavirin and detection of SPLCV in the regenerated plantlets by the PCR assay was an efficient system for the SPLCV elimination from infected sweet potato.

Efficiency of virus elimination in apple calli (cv. Hongro) derived from meristem culture of dormant buds (사과 품종 홍로의 휴면아 분열조직 배양을 통해 형성된 캘러스에서의 바이러스 제거효율)

  • Kim, Mi Young;Chun, Jae An;Cho, Kang Hee;Park, Seo Jun;Kim, Se Hee;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.379-387
    • /
    • 2017
  • Various sizes (0.2 ~ 1.2 mm) and developmental stages (referred to as Stage 1 ~ 3) of apical and lateral meristems were excised, together or separately, directly from dormant buds of apple 'Hongro'. They were mixed infected by Apple scar skin viroid (ASSVd), Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV), which are major viruses attacking apples. A total of 31 callus lines (> 10 mm in diameter) were obtained by culturing the explants on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 3.0 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-butyric acid (IBA), and they were subjected to RT-PCR analysis for virus detection. A high rate of virus elimination (expressed as the percentage of calli that did not amplify during RT-PCR, i.e., RT-PCR negative calli per total number of calli obtained) was achieved for ACLSV (100%), ASSVd (93.7%), and ASPV (93.7%), whereas it was only 25.8% for ASGV. ASPV was detected in the presence of 2 ~ 3 bracts. Simultaneous virus elimination of ASSVd, ASPV, ACLSV, and ASGV occurred during the meristem culture, in which the early stages of the dormant buds (Stage 1) were used, because ASGV was mostly eliminated during that stage. The results of the present study will be valuable for the production of virus-free apple trees.

Efficient virus elimination for apple dwarfing rootstock M.9 and M.26 via thermotherapy, ribavirin and apical meristem culture (사과 왜성대목 M.9 및 M.26의 고온, ribavirin, 생장점 배양을 통한 바이러스 제거)

  • Kwon, Young Hee;Lee, Joung Kwan;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Huh, Yoon Sun;Park, Eui Kwang;Yoon, Yeo Joong
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.228-235
    • /
    • 2019
  • Apple (Malus pumila) is one of the most economically important fruits in Korea. but virus infection has decreased the sustainable production of apples and caused serious problems such as yield loss and poor fruit quality. Virus or viroid infection including apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple mosaic virus (ApMV) and apple scar skin viroid (ASSVd) have been also reported in Korea. In many cases, as apple gets infected with virus and viroid with no specific symptoms, the damage and symptoms caused by the viruses are not detected. In our research, viruses in the rootstock were eliminated for a virus-free apple dwarfing rootstock of M.9 and M.26. The virus elimination methods were apical meristem culture, thermotherapy ($37^{\circ}C$, 6 weeks) and chemotherapy($Ribavirin^{(R)}$). The detection of apple viruses was accomplished by Enzyme-linked Immuno-Sorbent Assay (ELlSA) and reverse transcription-polymerase chain reaction (RT-PCR). RT- PCR method was 10 ~ 30% more sensitive than the ELISA method. The efficiency of virus elimination was enhanced in apical meristem culture method. The acquisition rate of virus-free apple dwarfing rootstocks was 30 ~ 40% higher in apical meristem culture. After the meristem culturing of M.9, the infection ratio of ACLSV, ASPV and ASGV was 45%, 60% and 50%, respectively. In the apple dwarfing rootstock of M.26, the infection ratio of ACLSV, ASPV and ASGV was 40%, 55% and 55%, respectively. Based on this study, the best method for the production of virus-free apple dwarfing rootstocks was the apical meristem culture.

Elimination of Apple stem grooving virus from 'Mansoo' pear (Pyrus pyrifolia L.) by an antiviral agent combined with shoot tip culture (항바이러스제 처리와 경정배양에 의한 배(Pyrus pyrifolia L.) '만수'의 Apple stem grooving virus 무병화)

  • Cho, Kang Hee;Shin, Juhee;Kim, Dae-Hyun;Park, Seo Jun;Kim, Se Hee;Chun, Jae An;Kim, Mi Young;Han, Jeom Hwa;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, in vitro-cultured 'Mansoo' pear (Pyrus pyrifolia L.) plants infected with Apple stem grooving virus (ASGV) were used for testing the efficiency of the virus elimination methods. The shoot tips cut from infected plants were treated by thermotherapy ($37^{\circ}C$), cold therapy ($4^{\circ}C$), chemotherapy with ribavirin, and combination of these methods. Treatment periods were 2, 4, and 8 weeks, and concentrations of ribavirin were 20 and $40mg{\cdot}L^{-1}$. The efficiency of ASGV elimination was evaluated by reverse transcription polymerase chain reaction. The shoot survival rate was the highest at 100% after cold therapy, chemotherapy, and combination of two methods, while the rate was the lowest at 33.3% after thermotherapy for 2 weeks. The shoot survival rate after chemotherapy decreased gradually as the treatment period was prolonged. The ASGV elimination rate was the highest at 100% after ribavirin treatment at a concentration of $40mg{\cdot}L^{-1}$ and combination of ribavirin treatment and thermotherapy for 2 weeks, whereas the ASGV elimination rate after cold therapy was the lowest at 16.7%. However, the efficiency of ASGV elimination was enhanced up to 43.3% by the combination of cold therapy and ribavirin treatment. The efficiency of ASGV elimination for all treatments was increased as the treatment period was prolonged. Based on these results, we suggest that ribavirin treatment at a concentration of $20mg{\cdot}L^{-1}$ for 4 weeks or at a concentration of $40mg{\cdot}L^{-1}$ for 2 weeks combined with shoot tip culture was efficient for the elimination of ASGV from pear.

Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors

  • Bouamama-Gzara, Badra;Selmi, Ilhem;Chebil, Samir;Melki, Imene;Mliki, Ahmed;Ghorbel, Abdelwahed;Carra, Angela;Carimi, Francesco;Mahfoudhi, Naima
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.561-571
    • /
    • 2017
  • Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on $Ch{\acute{e}}e$and Pool (1987). based-medium, enriched with $2mg1^{-1}$ of 2,4-dichlorophenoxyacetic acid and $2.5mg1^{-1}$ of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPaV as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

Comparison of Virus Elimination Methods for Disease-free Seedlings of the Apple Dwarfing Rootstock (사과 왜성대목 무독묘 생산을 위한 바이러스 제거 방법 비교)

  • Kwon, Young Hee;Lee, Joung Kwan;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Huh, Yoon Sun;Yoon, Yeo Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.54-54
    • /
    • 2019
  • Apple (Malus domestica) is one of the most economically important fruits in Korea. But virus infection has decreased sustainable production of apple and caused the serious problems such as yield loss and poor fruit quality. Virus or viroid infection including Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple mosaic virus (ApMV) and Apple scar skin viroid (ASSVd) has been also reported in Korea. In many cases, apple is infected with virus and viroid with no specific symptoms, the damage caused by the virus are unaware significantly. In our research, we tried to eliminate viruses in the rootstock for the disease-free seedlings of the apple dwarfing rootstock M.9 and M.26. The method of virus elimination was meristem culture, heat($37^{\circ}C$, 6weeks) treatment and chemistry($Ribavirin^{(R)}$) treatment. The analytical methods commonly used for the detection of virus is Enzyme-linked Immuno-Sorbent Assay(ELlSA) and Reverse Transcription-polymerase Chain Reaction(RT-PCR). RT-PCR method was more 30% sensitive than ELISA method. Efficiency of method eliminate virus appeared meristem method > heat treatment > chemistry treatment. The higher acquisition rate of disease-free seedlings is 30~40% on meristem treatment. In meristem treatment, the apple dwarfing rootstock M.9 gained infection ratio of ACLSV, ASPV and ASGV were 45%, 60% and 50% respectively. In the apple dwarfing rootstock M.26, infection ratio of ACLSV, ASPV and ASGV were 40%, 55%, 55%, respectively. Based on our results, it was found that most effective method of disease-free seedlings apple dwarfing rootstocks was by meristem treatment than heat method and chemistry treatment.

  • PDF

Elimination of respiratory pathogens in endemically infected swine herds by nursery depopulation (Nursery depopulation 기법에 의한 돼지 호흡기질병 상재돈군의 호흡기 병인체 전파방지에 관한 연구)

  • Kim, Bong-hwan;Joo, Han-soo
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.4
    • /
    • pp.755-763
    • /
    • 1997
  • Recently new technologies for the establishment of high health herds are becoming efficient tools in the control of PRRS virus and secondary infections. Medicated early weaning(MEW) and nursery depopulation(ND) have shown to be one of the most successful procedures in the eradication and control of pathogens. Indirect evidence of the role of PRRSV in precipitating secondary infection comes from successful improvement in growth and in decreasing mortality on farms that have eliminated PRRSV through ND. Hence the present experiments were conducted in an effort to compare ND with MEW procedures as a means of eliminating PRRSV controlling secondary pathogens and improving performance of pigs in endemically infected swine herds. Following MEW and ND procedures practiced in the farms, some benefits obtained were as follows: 1. A decrease in PRRSV circulation in the nursery, but no entire elimination. 2. Decrease in the frequency of secondary bacteria and in the use of antibiotics. 3. Mycoplasma hyopneumoniae infection was prevented during the nursery stage. 4. ND protocol had a lower cost and management changes than MEW techniques. 5. Nursery performance was improved after the depopulation, cleaning and disinfection procedures, even though PRRSV still being cycled in the old nursery rooms. These studies revealed that the MEW and ND protocols are not always successful for PRRS virus elimination but it's great effect on control of secondary pathogens and improvement of performance make MEW and ND an efficient tools for the establishment of healthier and more efficient herds.

  • PDF

Porcine epidemic diarrhea virus: an update overview of virus epidemiology, vaccines, and control strategies in South Korea

  • Guehwan Jang;Duri Lee;Sangjune Shin;Jeonggyo Lim;Hokeun Won;Youngjoon Eo;Cheol-Ho Kim;Changhee Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.58.1-58.25
    • /
    • 2023
  • Porcine epidemic diarrhea virus (PEDV) has posed significant financial threats to the domestic pig industry over the last three decades in South Korea. PEDV infection will mostly result in endemic persistence in the affected farrow-to-finish (FTF) herds, leading to endemic porcine epidemic diarrhea (PED) followed by year-round recurrent outbreaks. This review aims to encourage collaboration among swine producers, veterinarians, and researchers to offer answers that strengthen our understanding of PEDV in efforts to prevent and control endemic PED and to prepare for the next epidemics or pandemics. We found that collaboratively implementing a PED risk assessment and customized four-pillar-based control measures is vital to interrupt the chain of endemic PED in affected herds: the former can identify on-farm risk factors while the latter aims to compensate for or improve weaknesses via herd immunity stabilization and virus elimination. Under endemic PED, long-term virus survival in slurry and asymptomatically infected gilts ("Trojan Pigs") that can transmit the virus to farrowing houses are key challenges for PEDV eradication in FTF farms and highlight the necessity for active monitoring and surveillance of the virus in herds and their environments. This paper underlines the current knowledge of molecular epidemiology and commercially available vaccines, as well as the risk assessment and customized strategies to control PEDV. The intervention measures for stabilizing herd immunity and eliminating virus circulation may be the cornerstone of establishing regional or national PED eradication programs.