• Title/Summary/Keyword: Virus detection

Search Result 893, Processing Time 0.029 seconds

Elimination of SPFMV from Virus-infected Sweet Potato Plants through Apical Meristem Culture

  • Kim, Young-Seon;Jeong, Jae-Hun;Park, Jong-Suk;Eun, Jong-Seon
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.200-205
    • /
    • 2004
  • Sweet potato infected with a viral disease (SPFMV) showed irregular chlorotic patterns, so called feathering associated with faint or distinct ring spots that have purple-pigmented borders. SPFMV was eliminated from sweet potato plants using meristem tip culture. MS medium supplemented with BAP (2mg/L) and NAA (0.05 mg/L) was used for shoot proliferation and 1/2 MS medium for rooting of the plants. Highest percentage of regenerated plants (60%) was obtained from the optimum size (0.3-0.5mm) meristem tips. Of these, 60% plants were found negative for SPFMV by RT-PCR. Virus detection by RT-PCR was found to be a reliable method. Meristem-tip culture to produce SPFMV-free quality sweet potato and virus detection by RT-PCR is an efficient, time saving and reliable method for production of SPFMV-free tissue culture raised plants.

  • PDF

Detection of Respiratory Viral Pathogens and Mycoplasma spp from Calves with Summer Pneumonia in Korea

  • Park, Jung-hoon;Kim, Doo
    • Journal of Veterinary Clinics
    • /
    • v.36 no.4
    • /
    • pp.185-189
    • /
    • 2019
  • Respiratory pathogens of calves including bovine parainfluenza type 3 virus (BPI3V), bovine respiratory syncytial virus (BRSV), infectious bovine rhinotracheitis virus (IBRV) and Mycoplasma spp is well-known for winter pathogens. However, there are no studies about summer pneumonia pathogens of calves in Korea. The aim of this study was to detect respiratory pathogens from calves with summer pneumonia. Eighty calves from 5 regions were chosen and their nasal swabs were used to detect respiratory pathogens with real-time PCR. Mycoplasma spp was major primary respiratory pathogens in calves with summer pneumonia. Although, the detection rates of respiratory viruses were very low, serological assays showed that respiratory viruses exist widely in farms.

Detection of Puumala and Hantaan Viruses among Bats in Korea by Nested RT-PCR

  • Lee, Yun-Tai;Yun, Bo-Kyoung;Yoon, Jeong-Joong
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.147-155
    • /
    • 1998
  • Hantavirus is a genus of the Bunyaviridae family consisting following serotype groups: Hantaan, Seoul, Puumala, Prospect Hill, Thailand, Belgrade, Thotta palayam, Sin Nombre. Most of Hantavirus group have been associated with many clinically similar disease known collectively as hemorrhagic fever with renal syndrome (HFRS). Hantaan virus is the prototype of the genus hantavirus, originally isolated from Apodemus agrarius. Bat was found as a natural host for Hantaan virus in Lee's lab for the first time. Then, Hantaan-like virus was isolated Hantaan-like virus from bat. To identify hantaviruses that are present in Korea among bats, bats were collected from Jeong-Sun, Won-Joo, Chung-Ju and Hwa-Cheon area, RNA was isolated from lung and serum. RT-PCR was performed with a universal primer from M segment. Nested RT-PCR was carried out to differentiate Hantaan, Seoul and Puumala virus using serotype specific primers. As we expected, Hantaan viruses were detected in bats and Seoul virus was not detected. Interestingly, Puumala viruses were also detected in bats from Won-Ju, but not in other areas. Puumala virus is originally isolated from Clethrinomys glareolus, and cause light HFRS. Recently, Paradoxomis webbiana, a wild bird turn out to be a reservoir for Puumala virus in Korea. These data indicate that bat is a new natural reservoir of Puumala virus.

  • PDF

Development of an RT-PCR assay and its positive clone for plant quarantine inspection of American plum line pattern virus in Korea

  • Da-Som Lee;Junghwa Lee;Seong-Jin Lee;Seungmo Lim;Jaeyong Chun
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.821-831
    • /
    • 2022
  • American plum line pattern virus (APLPV), a member of the genus Ilarvirus in the family Bromoviridae, is one of the plant quarantine pathogens in Korea. In this study, 15 candidate primer sets were designed and examined to develop a reverse transcription polymerase chain reaction (RT-PCR) assay for plant quarantine inspection of APLPV. Using APLPV-infected and healthy samples, the primer sets were assessed for APLPV detection. To confirm the occurrence of nonspecific reactions, six ilarviruses (Apple mosaic virus, Asparagus virus 2, Blueberry shock virus, Prune dwarf virus, Prunus necrotic ringspot virus, and Tobacco streak virus) and 10 target plants (Prunus mume, P. yedoensis, P. persica, P. armeniaca, P. dulcis, P. tomentosa, P. avium, P. glandulosa, P. salicina, and P. cerasifera) were examined. Finally, two primer sets were selected. These primer sets could generate the expected amplicons even with at least 1 ng of the total RNA template in concentration-dependent amplifications. In addition, a positive clone was developed for use as a positive control in the abovementioned RT-PCR assay.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

The Application of RNA Transcript Conformation Polymorphism in Resolving Mixed Infection of PVY Isolates

  • Maslenin, Ludmila;Rosner, Arie
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.308-312
    • /
    • 2004
  • A method based on RNA-transcript conformation polymorphism (TCP) was tested for detection of two PVY isolates in a mixed infection. Differences in electrophoretic mobility of RNA transcripts copied from PCR products of each virus isolate enabled the distinction between the two virus isolates in a mixed infection. The identities of the RNA transcripts and hence of the infecting virus isolates were determined by annealing to reference oligonucleotides containing unique strain-specific sequences visualized by retardation of transcript mobility in gel. The ratio at which both virus isolates could be detected was as low as 1:10. The suitability of this procedure for the study of mixed virus infections is discussed.

Development of PCR-base Diagnostic System for the Detection of Andean potato latent virus (Andean potato latent virus 검출을 위한 PCR 기반 진단시스템 개발)

  • Lee, Jin-Young;Kim, Jin-Ho;Kim, Eunsil;Lee, Siwon
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.2
    • /
    • pp.105-109
    • /
    • 2015
  • Andean potato latent virus (APLV) is a phytopathogenic virus that belongs to the Group IV (+) sense ssRNA viruses of the genus Tymovirus. It mainly infects potatoes and is specified as a controlled quarantine virus in Korea. In this study, two primer sets of RT-PCR and nested PCR [set 2 ($404{\rightarrow}259bp$) and set 23 ($501{\rightarrow}349bp$)], were selected, which can rapidly and accurately diagnose APLV in quarantine sites. In addition, a modified-positive control plasmid is development, can possible verification of laboratory contamination in diagnosis of APLV detection. The PCR-base system developed in this study is expected to diagnose APLV and contribute to the plant quarantine in Korea.

Development of a One-Step Duplex RT-PCR Method for the Simultaneous Detection of VP3/VP1 and VP1/P2B Regions of the Hepatitis A Virus

  • Kim, Mi-Ju;Lee, Shin-Young;Kim, Hyun-Joong;Lee, Jeong Su;Joo, In Sun;Kwak, Hyo Sun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1398-1403
    • /
    • 2016
  • The simultaneous detection and accurate identification of hepatitis A virus (HAV) is critical in food safety and epidemiological studies to prevent the spread of HAV outbreaks. Towards this goal, a one-step duplex reverse-transcription (RT)-PCR method was developed targeting the VP1/P2B and VP3/VP1 regions of the HAV genome for the qualitative detection of HAV. An HAV RT-qPCR standard curve was produced for the quantification of HAV RNA. The detection limit of the duplex RT-PCR method was 2.8 × 101 copies of HAV. The PCR products enabled HAV genotyping analysis through DNA sequencing, which can be applied for epidemiological investigations. The ability of this duplex RT-PCR method to detect HAV was evaluated with HAV-spiked samples of fresh lettuce, frozen strawberries, and oysters. The limit of detection of the one-step duplex RT-PCR for each food model was 9.4 × 102 copies/20 g fresh lettuce, 9.7 × 103 copies/20 g frozen strawberries, and 4.1 × 103 copies/1.5 g oysters. Use of a one-step duplex RT-PCR method has advantages such as shorter time, decreased cost, and decreased labor owing to the single amplification reaction instead of four amplifications necessary for nested RT-PCR.

Development of Diagnostic System to Black Queen Cell Virus(BQCV) Using Multi-point Detection (Multi-point PCR법을 이용한 Black Queen Cell Virus (BQCV) 검출법 개발)

  • Kim, Somin;Kim, Byounghee;Kim, Moonjung;Kim, Jungmin;Truong, A Tai;Kim, Seonmi;Yoon, Byoungsu
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • BQCV multi-point PCR was developed as a rapid multiplex detection method for BQCV, one of the viral pathogens of honeybees. It could detect BQCV specific genes qualitative as well as quantitative detection based on ultra-rapid PCR. Three primer pairs (RNA dependent RNA polymerase, capsid protein, 3C like protease) were specifically designed for accurate the detection and were optimized for minimizing the detection time and increasing the sensitivity. Our advanced diagnostic system have the accuracy by lowering the concern about the variation in the BQCV detection site. In addition, it should be an opportunity to identify mutations that are mixed with other viruses.